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A METRIC ON HYPERSPACES DEFINED BY WHITNEY MAPS

WLODZIMIERZ J. CHARATONIK

Abstract. For a given continuum X a new metric on the hyperspace 2X is defined,

which is equivalent to the Hausdorff distance, but which has some other properties.

All spaces in this paper are assumed to be metric and all mappings are continu-

ous. A continuum is a compact connected space. Given a continuum X with a metric

d, we define the Hausdorff distance 77 between two nonempty closed subsets A and

Pby

H(A, B) = max{ sup inf d(a, b), sup inf d(a, b)\
[aeAheB beB«*A '

(see [1, (0.4), p. 3]). The symbol 2X denotes the hyperspace of all nonempty closed

subsets of a continuum A with the Vietoris topology (see [1, (0.11), p. 9] for the

definition) or, equivalently (see [1, (0.13), p. 10]) with the topology determined by

the Hausdorff distance.

A mapping p: 2X -> [0, oo) is called a Whitney map (see [1, (0.50), p. 24]) if it

satisfies the conditions:

(1) for every x G A, p({x}) = 0; and

(2) for every A, B g 2X with A C Band A * B, p(A) < ¡x(B).

We consider special Whitney maps, namely ones satisfying an additional condi-

tion:

(3) for every A, B g 2x with A cz B and for every C g 2x,

fi(B U C) - ¡i(A U C) < p(B) - p(A).

Such mappings do exist for every continuum X (see Proposition 1 below).

Given a sequence of sets {^4„}^„i we denote by Ls An the upper limit of the

sequence in the sense of [1, (0.5), p. 4], and by Lim An the limit of the sequence in

the sense of [1, (0.5), p. 4] or, equivalently (see [1, (0.7), p. 4]), in the sense of the

Hausdorff distance.

In the present paper a new metric on the hyperspace of a continuum is defined,

which is equivalent to the Hausdorff distance, but which has some other properties.
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We start with

Proposition 1. For every continuum X there are Whitney maps ¡u. and p! such that p

satisfies, while p! does not satisfy, condition (3).

Really, the reader can verify that a Whitney map p. defined in [1, (0.50.2), p. 26]

has property (3). On the other hand, let x, y, z g X be any distinct points and put

/({*}) = f({y}) = /({*}) = 0, f({x, y}) = f({x, z}) = f({y, z}) = 1, and
/({jc, y, z}) = 3. Then/satisfies (1) and (2) for the space {x, y, z) and therefore it

can be extended to a Whitney map /x' on 2X (see [2, Corollary 3.4, p. 468] and

observe that the assumption of connectedness of spaces is not used in the proof).

However, putting^ = {x}, B = {x, y), and C = [z], we can see that/(and hence

p ) does not satisfy (3).

Definition 2. Let A" be a continuum and let p be a Whitney map satisfying (3).

Define, for every P, Q g 2x,

D^P, Q) = max{/i(P U Q) - p(P), p(P U Q) - p(Q)}.

Proposition 3. D^ defined above is a metric on 2X.

Proof. The condition 7)M(P, Q) = 0 if and only if P = Q is a consequence of (2);

the symmetry of D^ is obvious from the definition. We show the triangle condition.

Let P, Q, R g 2X. We can assume without loss of generality that ju.(P)<ju,(P).

Then we have to show

p(P U Q) - nún{p(P), p(Q)} + p(Q U R) - mini^Q), p(R)}

>p(PvR)-p(P).

It is enough to show

,x(P U Q) - jx(P) + jx(Ô UP)- ix(Q) - p(P UR) + p(P) > 0,

but using (3) for A = Q, B = P U Q, and C = R we see that the left member of the

inequality is greater than or equal to

p(P U Q U R) - p(Q U R) + p(Q U R) - n(P U R)

and, therefore, is nonnegative.

Proposition 4. For any Whitney map p satisfying (3) the metric D^ is equivalent to

the Hausdorff distance H.

Proof. Let a set A g 2x be given and assume a sequence {An}"_, tends to A with

respect to the Hausdorff distance, i.e., H(A„, A) -* 0. Then 77(^„ U A, A) -* 0, and

by continuity of p we have jtt(^4„ U A) -* p(A) and fi(An) -* p(A). Thus,

max{p(An UA)- p.(A), p(A„ U A) - p(An)} -* 0,

i.e., the sequence {An }^°_, tends to the set A with respect to the metric D .

On the other hand assume ( An }™=1 tends to A with respect to the metric Dß, i.e.,

(4) p(A„ UA)- p(A) -+ 0 and

(5)p(AnUA)-p(An)^0.
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We show that

(6) Lim(^„ U A) = A.

Assume, on the contrary, that there is a subsequence { An }°L, with Lim(^4„ U A)

= B ¥= A. Then A a B and (2) imply p(A) < p(B),a contradiction to (4).

Note that (6) implies

(7) Ls^ c A.

Now suppose there exists a subsequence [An }°°=x with Lim A„ — C * A. By (7)

we have C c A and, therefore, by (2), p(C) < p(A). Then (6) implies a contradic-

tion to (5). So we have proved Lim An = A, i.e., [An)^x tends to A with respect to

the Hausdorff distance.

Now we show some facts concerning the metric D . Some of them are obvious and

their proofs are omitted.

Let A" be a fixed continuum and let p be a Whitney map satisfying (3).

Fact 5. Consider 2X as a metric space with the metric D^, and let sfc 2X be an

ordered arc. Then p\J¿: sí -» [0, oo) is an isometry.

Fact 6. Let x g A g 2x. Then D^A, {x}) = p(A). In other words, the distance

between a set and any point in the set does not depend on the choice of the point.

Fact 7. Let s/be an ordered arc contained in 2X and let P G 2X. Denote byA0 either

the only set in s/ satisfying p(A0) = p(P) if such a set does exist, or f)s/ if

jt(P) < p(A) for each A G j/, or U sf if ¡i(P) > p(A) for each A es/. Then

inf {D^A, P):A&s/) = Dll(A0,P).

Proof. Take a set ,4 g s/. We have to show D^Aq, P) < D^A, P). Consider two

cases:

Case 1. A0 c A. Then

D^A, P) = p(A UP)- p(P) > p(A0 UP)- p(P) = D^Ao, P).

Case 2. A c A0. Then by (3) we have

Dß(A, P) = p(A UP)- p(A) > p(A0 UP)- p(A0) = D¿A0, P).

This completes the proof.

Fact 8. Let D be any metric on 2X equivalent to the Hausdorff metric. Then the

continuity of a Whitney map p means

Ve > 035 > OVA, B G 2X: D(A, B) < 8 =>\(i(A) - p(B)\ < e.

If we replace D by D^ we can put 8 = e.

Proof. We have to show D^(A, B) < e implies \p.(A) — p(B)\ < e. Assume p(A)

> p(B). Then

e > D^A, B) = p(A UP)- p(B) > p(A) - p(B),

and we are done.

To end the paper we ask some questions connected with condition (3). We say

that two Whitney maps px and p2 are equivalent if for every t there exist t' and t"

such that Hl\t) is homeomorphic to p2x(t') and p~2x(t) is homeomorphic to p.xx(t").
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Question 9. Given any Whitney map px is there a Whitney map p2 which is

equivalent to px and satisfies (3)?

Question 10. Given any continuum X and any Whitney map p: 2X -» [0, jtt( A")]

does there exist a homeomorphism « from [0, p( A")] into [0, co) such that « » jtt is a

Whitney map satisfying (3)?
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