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INTRINSIC CURVATURE OF THE INDUCED METRIC ON

HARMONICALLY IMMERSED SURFACES1

TILLA KLOTZ MILNOR

Abstract. A theorem by Wissler is used to prove the following result. Suppose that

an oriented surface 5 with indefinite prescribed metric h is harmonically mapped

into an arbitrary pseudo-Riemannian manifold so that the metric / induced on S is

complete and Riemannian. Then the intrinsic curvature K(I) of the immersion

satisfies int\K(I)\ - 0, with sup|gradl/K(I) = oo in case K(I) never vanishes on

ço.

1. Suppose that an oriented surface S is provided with an indefinite prescribed

metric h. Suppose further that S is harmonically immersed in some pseudo-Rieman-

nian manifold M so that the metric 7 induced on S is complete and Riemannian. We

show in this paper that the intrinsic curvature 7C(7) cannot be bounded away from

zero on S.

Note that the pseudo-Riemannian manifold M in which S is immersed is quite

arbitrary, and in particular, may be Riemannian. Despite the generality of the

ambient manifold, we have a result strikingly similar to Efimov's theorem that 7C(7)

cannot be bounded away from zero on a complete, noncompact surface in Euclidean

3-spaceis3.

Throughout the study of harmonically immersed surfaces, there are echos of

classical surface theory. When the prescribed metric « is indefinite, there is a tie to

the line of ideas which sprang from the study of surfaces in E3 with constant

negative Gauss curvature. For some insight into this phenomenon, see [10].

Because an indefinite metric « is prescribed on the surface 5 above, we know that

5 cannot be compact with genus zero. Thus a result of Bonnet-Hopf-Rinow (see [13])

applied to S with the complete Riemannian metric 7 imphes that 7C(7) must be

negative if bounded away from zero. To show that a negative 7C(7) cannot be

bounded away from zero, one must use the hypothesis that S is harmonically

immersed.

The proof involves straightforward application of a theorem due to Wissler [14].

In all but the most degenerate cases, an «-null Tchebychev net (defined below)

automatically exists on a harmonically immersed surface with indefinite prescribed

metric h. Wissler's theorem states that an abstract surface provided with a complete
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Riemannian metric and a Tchebychev net cannot have intrinsic curvature bounded

away from zero.

To get his result, Wissler generalized arguments used by Hubert [6] and Holmgren

[7] at the turn of the century to show that the hyperbolic plane cannot be

isometrically immersed in 7i3. Wissler's theorem may have seemed a somewhat

artificial extension of known results established by pushing classical arguments as

far as they would go in directions suggested by Efimov's work [2-4]. Yet application

of Wissler's theorem to harmonically immersed surfaces with indefinite prescribed

and Riemannian induced metric is completely natural. Indeed, the real work needed

to prove the theorem below has been done in [10] and [14].

In §2 we present a more detailed statement of Wissler's theorem, of our result, and

of the argument just outlined. Though less is needed, we assume C00 smoothness

throughout. For the definition of a harmonic map, see [10].

2. A Tchebychev net is formed on an orientable surface S with Riemannian metric

g by the null curves of an indefinite real quadratic form b = b^dx'dx^, i, j' = 1,2, in

case there are local coordinates x, y available anywhere on 5 in terms of which

g = dx2 + 2cos w dx dy + dy2,   b = 2bX2 dx dy.

Such coordinates x, y are called Tchebychev coordinates. Opposite sides of Tche-

bychev coordinate curve quadralaterals have equal lengths. The function to can be

taken so that 0 < co < n, and represents the angle between the «-null Tchebychev

coordinate curves.

The existence of Tchebychev nets on any harmonically immersed surface with

indefinite prescribed metric was suggested by an example well known to physicists.

There (see [5] or [12]) the Minkowski 2-plane is harmonically immersed in the

standard round 2-sphere. The general situation is described by Theorem 7 in [10].

When the induced metric 7 is Riemannian, we have the following.

Lemma 1. Given a harmonic map from an oriented surface S with indefinite

prescribed metric « and Riemannian induced metric I, the h-null curves form a

Tchebychev net on S with respect to I.

Proof. Note that the map must be an immersion since the induced metric 7 is

nondegenerate. Given our hypotheses, Theorem B from [10] states that the equiareal

metric

n = ^-det 7/det « «

satisfies the Codazzi Mainardi equations of classical surface theory with respect to

the Riemannian metric 7. Thus Theorem 2 from [14] assures that the curves defined

by setting « = 0 provide a Tchebychev net on S with respect to 7. We should have

cited Wissler's Theorem 2 from [14] in connection with Lemma 10 from [9] and

Lemma 8 from [10]. However, we were unaware of his result at the time.
L J 7

Remark. Using the coordinates x, y provided by Lemma 1, the pair of forms

7 = dx2 + 2 cos u dx dy + dy2,       77 = ± 2 sin co dx dy
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looks much like the pair of fundamental forms 7, 77 for a surface in E3 with Gauss

curvature Jf= -1. This is not accidental. For one thing, IT is a conformai normaliza-

tion of «, chosen so that (det Il/det7) = -1. However, the crucial fact (see [10]) is

that the identity map from S with prescribed metric 77 to 5 with prescribed metric 7

is harmonic for an 5 in E3 with Jf a negative constant.

It was the global behavior of the Tchebychev net that caused some trouble in

Hilbert's original proof [6]. We will adapt our argument from Appendix 1 of [8] to

show that here the Tchebychev net lifted to the universal cover S of S must be

globally cartesian if 7 is complete. Alternately, one might use Theorem 3 from [14].

But we do not know from the outset here that opposite sides of a Tchebychev net

quadralateral must be equal in length, unless the quadralateral is in the domain of

some local Tchebychev coordinates.

Lemma 2. Suppose the induced metric I is complete in Lemma 1. 77ie« the lift of the

Tchebychev net defined by h = 0 to the universal cover S of S is globally cartesian, i.e.,

there is a diffeomorphism of S on to E2 taking the Tchebychev net to the cartesian

coordinate net.

Proof. Consider the equivalent T of the third fundamental form given by

r = (tr/n)n + 7.

The form F is positive definite because 0 < co < ir and

T = dx2 - 2cos co dx dy + dy2

in terms of Tchebychev coordinates. Thus the form

A = 1(7+ T) = dx2 + dy2

is complete on S, since 2 A > 7. Note that the Tchebychev net is an orthogonal net

of geodesies for the metric A on 5. There must be an orientation preserving isometry

from the simply connected, flat Riemannian manifold (S, A) onto E2. (See p. 149 of

[1].) Under this isometry, the Tchebychev net goes to a net of mutually perpendicu-

lar straight lines. Translating and rotating Tí2 if necessary, one gets the result

claimed.

Lemma 2 guarantees that when 7 is complete in Lemma 1, there is a global set of

Tchebychev coordinates on S. This implies that opposite sides of all Tchebychev net

quadralaterals on S have equal lengths.

We now paraphrase Theorem 7 from [14] and state the result which our remarks

have established.

Wissler's Theorem. If a Tchebychev net is defined on an orientable surface with

complete Riemannian metric g, then the intrinsic curvature K of g satisfies inf |7C| = 0,

with sup|grad(l/7C)| = oo in case K never vanishes.

Theorem. Suppose a harmonic map from an oriented surface S with indefinite

prescribed metric h into an arbitrary pseudo-Riemannian manifold has a complete

Riemannian induced metric I. Then the intrinsic curvature K(I) of the immersion

satisfies inf \K(I)\ = 0, with sup|grad{l//C(7)}| = oo in case K(I) * 0 on S.
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By the Remark above, Hubert's theorem [6] is a special case of our Theorem. At

this point, we can suggest only the most obvious applications of the Theorem, such

as those which can be read directly from the Gauss curvature equation. (See

Corollary 4.6 in [11].) Finally, for the harmonic immersion of the Minkowski 2-plane

in the round 2-sphere cited in [5] and [12], our Theorem states that 7 cannot be

complete, since 7C(7) = 1 there.
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