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THREE-SPACE PROBLEM FOR LOCALLY UNIFORMLY ROTUND

RENORMINGS OF BANACH SPACES

G. GODEFROY, S. TROYANSKI, J. WHITFIELD1 AND V. ZIZLER2

Abstract. If Y is a subspace of a real Banach space X such that X/ Y admits an

equivalent LUR norm, then X admits an equivalent LUR (strictly convex) norm

provided Y also does.

1. Introduction. It may happen that a Banach space with quite complicated

structure may possess nice factors through nice subspaces (see e.g. [4, 6, 7]). Thus the

question of what properties are shared by the whole space X, if satisfied in both

Y c X and X/Y, is of some interest. Concerning such properties linked with

renorming theory, it is known that such a property, for instance, is being isomorphic

to a uniformly convex space [4] while it is not the case for the property of being

isomorphic to Hilbert space [4, 7], nor for the property to be weakly compactly

generated (see e.g. [3]). Recently M. Talagrand proved that this also is not the case

for the property of the space admitting an equivalent Gateaux smooth norm [11].

A norm | • | of a Banach space X is called locally uniformly rotund (LUR) if

lim|x„ — jc| = 0 for each xn, x G X, for which lim2|jc|2 + 2|xJ2 - \x + xn\2 = 0.

The result of this paper originated from a more detailed study of the geometry in

Day's construction of an LUR norm on c0(T) (see [10]) and, mainly, of its extension

to spaces with transfinite Schauder bases in [12]. Some arguments of [5] are used

here too.

Partial results connected with our results, namely those for the cases where either

Y or X/ Y are separable, were proved in [1] and [5].

The main ideas for this paper arose from discussions among the authors at the

Winter School of Abstract Analysis (Czechoslovakia, January 1983) and the paper

was prepared while the last named author was a member of Sonder-

forschungsbereich 72 der Universität Bonn, in fall 1983.

2. Result.

Theorem. Let X be a real Banach space and Y be such a subspace of X such that

X/Y admits an equivalent LUR norm. Then X admits an equivalent LUR (strictly

convex) norm provided that the subspace Y also does.
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Proof. (Depends heavily on that in [12].) We shall consider only the case of LUR;

the other case can be dealt with similarly (see [5]). Let || • || be an equivalent norm on

X, the restriction of which to Y is LUR. (For a simple construction of such a norm

see e.g. [5].) Furthermore, let | - | denote an equivalent LUR norm on X/Y which is

greater than or equal to the factor norm | • \x on X/Y given by || • ||. Denote by

Sx = {x g X/ Y,\x\ = 1}, where x means the element of X/ Y given by x.

Let B: X/Y —> X denote the Bartle-Graves continuous selection map (i.e. Bx g x

— see e.g. [2, p. 86]). For each à g Sx c X/Y, let/â g X* be such that/â(7iâ) = 1,

ll/all = |ô|f \ /a = 0 on Y, and let, for x g X, Pà(x) = fà(x) ■ (Bâ). Now, for each

à g Sx c X/Y and each positive integer k, define the following function $k a on X:

$fc,aU)=í* + â\2 + k~l{l +||7>a||)Í|x - Paix)f,    for* g X.

Furthermore, let

<t>k(x) = sup{<!>ka(x),â ^ Sxa X/Y),    forx g X,

and

jt.1      \ II     II2 I »I2 %->„*!*./■     \ r -O
0(x)=||x||   +|Jc|   + 2_,2-k$kix),    îotx G X.

7

Finally, let ||| • ||| be the Minkowski functional of the set {x g X: <b(x) + $(-.*)

The functions ®ka(x) will be used to transfer the LUR property of the norms || • ||

on Y and | • | on X/ Y to the whole space X.

It is easy to see that |j ■ ||| is an equivalent norm on X. We now show that it is

LUR. To do this suppose that, for some e > 0, x g X and sequence {xn} such that

(1) |||jc||| = 1 = HlxJI,    lim|||x + xj| = 2    and    \\x - xn\\ > e > 0

and find a contradiction.

Because of the uniform continuity of the function <b0(x) = ®(x) + $(-x) on

bounded sets on X, we have from (1), that

%(x) = %ixn) = 1,       lim<S>0(ix + x„)/2) = 1

and thus

j%(x) + ^%ix„) - %i(x + xn)/2) ^„0,

and, from a convexity argument,

(2) I$W + l$(xJ-rJ,((x + *J/2)^(?0.

Again by convexity, (2) implies that

2 2 2

(3) ilHI   +i||x„|   -\\(x + Xn)/2\\   -*«0'
2

(4) \\x\   + i|x„|   -\(x + x„)/2\   -*„Ù,

and, for each k,

(5) |<M*) + l2*kixa) - $,((x + xJ/2) -„0,
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and

(6) K= sup{||xj} < oo.

First, if x g Y, then x = 0 and, from (5), we have lim|jc„| = 0. Thus there are

x'„ g y, with lim||.x:,? - x'n\\ = 0. Then we have by (3) that

2iuii2 + 2ikii2-iu + x'ii2 0

and, since || • || is LUR on Y, lim||x,', - x\\ = 0, which contradicts (1).

If x G Y, let / = |jc|_1 > 0. Write tx = y0 + s0, s0 = B(tx),y0 G Y.

From  LUR of || • || on   Y,  there is a 8 G (0,1)  such that whenever y g Y,

\\y - y0\\ < 8, z g y, \\\y\\2 + i||z||2 - \\(y + z)/2\\2 < 8, then

(7) |b - 4 < tí/2.
Let ôj g (0, 8) be such that whenever^ G X, \y - tx\ < 8X, then

IlP II < lit II • If I     -i- 1\\ry\\   ^ II-'OII      l^oll     ^   l-

S2 = min{lO-1(rÄr+1)(||j0|| -|í0Ii   +2     8,et/8,8x

(8)

Put

From LUR of | • | of X/Y, choose 53 > 0 such that if à g S, c X/Y, \x + â\2 >

(/-' + 1)2(1 - 4S3), then

(9) \tx - â\ < 82   and    ||7i(rJc) - 7¿(<3)|| < ô2

(see e.g. [8, p. 343]). Finally choose, in the definition of our norm, an integer k such

that

(10) k > 8;lK-lzs-2

and fix this k until the end of the proof.

From (5) and (4) we have that

(11)    cn^^kix) + ^kixn)-^ki(x + xn)/2)^n0   and    lim||„ - x\ = 0.

Let ân G Sx c X/Y be such that

dn = <bk((x + xn)/2) - $kâni(x + xn)/2) -„0.

Then

c„ > l2*k,â+x) + WkMx'n) - *k';é(x + x„)/2) - d„ = b„ - d„

for some nonnegative bn, and thus, since lim cn = lim dn = 0, we have that lim bn = 0

as well. Therefore

2k'^r(l + ||7\J|)~ \\x -¿\(*)|

+ \\xn + âf + ^(l+\\Pjy2\\xn - £>„(*Jf

X + x„
+ à. :(' + ft

X  + X
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and by the convexity argument,

(12)

i2     1
(l +IKII) "f ||* - Pam(x)\\~ + f K - /»,.(*.)

X + X„ _ / X + X.
,0

2 * »»\     2

We now show that beginning with some index n0, we have that

(13) |x + â„|%(r-1 + l)2(l-463).

For, if it were not the case, then taking â'n = í_1Jc we would have, for infinitely many

m's,

i i2 ,2
|jc + â'„\   >\x + <3j   + 4S3.

Then for these n'swe would have, because of the convexity

c„>
lu i2      1

* + a;| +2r(i+h '2\\* - PAx)í

+ \\xn + âf + ¿(l + ||FaJ|)"2|x„ - Pam(xñ)\\

X + Xn  ,    .   '"'
—^— + a. -rM',

x + xn _        / X + x„
-¿„

11-    «,l2    11.    . I2
2 I* + a«l   ~ 2"'X + a"'

+¿(i+ii^ji)"2«* - ^.(*)i2 - Ux+k«)"2«* - v«2Jt

1 i-      - i2     Ii,       .i2
+ 2 I* + a„|   + 2lx" + a"'

2*'

+ a,

+ ¿(l +||PâJ|)"2||* - F¿n(x)||2 + ¿(l +||FâJ|)"2||x„ - Fân(x„
2

-l(i + IK

2Â:'

X + X„ l X + X') 4

>S3-dn

which contradicts c„ -» 0, dn -» 0. Therefore, beginning with some index n0, we have

that \x + â„\2 ^ (r1 + 1)2(1 - 4ô3) and hence by (9) and (8) we have that

(14)    \à„- tx\<82^8x,    ||7iâ„-7i(/Jc)||<52and||Fa I^Usoll-lîolî1 + 1.

Thus, by (12), for sufficiently large n > n0, we have that

(15)

1 II ,       -.II2 1  II / x\\2 tX  +  tX

-\\tx - Pänitx)\\   +-z\txn-Pbi<txn)\   ■
-- P, tx + txn

2
< 5,

(16) |ô„ - sn\ < 5,
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and

(17) \tx„ - tx\ < 82

(use (4) together with LUR of | • | on X/Y). Fix such an n until the end of our proof.

Now choose an element zn g ân such that

(18) ||z„ - tx\\ < 82

(use (16)), and an element x'n g ân such that

(19) \\x'n - tx„\\ < 282

(use (16) and (17)).

Setting an = Bân, write x'n = an + un, un g Y;zn = an + vn, vn g Y. Then

x'„ - P&x'„ = un,       ztl-Puz„ = vn

and, since tx = s0 + y0 and zn = an + vn, we have that

Ik - Joll < \\tX - Zn\\ + ho - a„\\

^\\tx - zn\\ + \\Bitx) - Bân\\^282^8x,

(use (14)). Moreover, we have (use (15))

"„+  Vn1  II      l|2 1   II       II2

¿HI   +2IW

,       vil*   ■."   1
- i-l|z„ ->â,(zB)||   + ±¡x'n-P¿x'n)¡   -

« -AtX - 7\(í*)||2 +  j |K - P4tXn)t -

x'„ + z„

2

tx + tx

- p.

tx + tx.

+ \\\zn -tx- Pan(zn - tx)\\(\\zn - Päniz„)\\ + \\tx - PKitx)

+ IlK - tx„ - P¿x'n - txn)\\(\\x'n - P¿x'n)\\ + |K - ¿V.OJI)

+
z„ - ÍX / z„ - ÍX
-~-p, +

*¿ - txn

•(IK - ̂ (^)I+IK - p¿<)\\ +Wtx - P^W +Wtx" - p^tx"^

^ \082itK + l)(\\s0\\\s0\-xl + 2)\ 8

(use (6), (18) and (19)). Therefore, by (7),

(20) e/2  > |K -  V„\\ = |K -  Pâ X'n -  Zn +  Pù„Zn\\ = \\X'n ~  Z J ■

Thus by (18), (19) and (20), we have

\\txn - tx\ < |K - x'„\\ + \\x'n - z„\\ + \\z„ - tx\\

Et      „       ~ „       £t      361"      et
< 2Ô2 + — + 82 = 382 + - < — + y < et.

Thus ||je   - x|| < e, a contradiction and the proof is finished.
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We end the paper with the following apparently open problem: Let X be a Banach

space and Y be such a subspace of X that both Y and X/Y admit equivalent strictly

convex norms. Must X admit an equivalent strictly convex norm?
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