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INEQUALITIES RELATING SECTIONAL CURVATURES
OF A SUBMANIFOLD TO THE SIZE OF

ITS SECOND FUNDAMENTAL FORM AND APPLICATIONS
TO PINCHING THEOREMS FOR SUBMANIFOLDS

RALPH HOWARD AND S. WALTER WEI

ABSTRACT. The Gauss curvature equation is used to prove inequalities relat-

ing the sectional curvatures of a submanifold with the corresponding sectional

curvature of the ambient manifold and the size of the second fundamental form.

These inequalities are then used to show that if a manifold M is 6-pinched for

some 5 > ¿, then any submanifold M of M that has small enough second

fundamental form is 8 m-pinched for some 6m > |. It then follows from the

sphere theorem that the universal covering manifold of M is a sphere. Some

related results are also given.

1. Introduction. This note is motivated by questions of the following type: Let

M be a complete Riemannian manifold and M a compact immersed submanifold

of M; how then is the topology of M affected by placing a sufficiently small upper

bound on the size of the second fundamental form of M in M? For example, when

M is isometric to a standard sphere, Lawson and Simons [L-S] show that if the

length of the second fundamental form of M is small enough, then M is a homotopy

sphere. If M is the product of two spheres, then the second author has shown in

[Wei] that the submanifolds of M with sufficiently small second fundamental are

homeomorphic to totally geodesic submanifolds of M.

Here we will consider the case that M is ¿-pinched for some 6 > $. That is,

all sectional curvatures of M are in the closed interval [6Ko, Ko] for some constant

Ko > 0. In this case the well-known sphere theorem of Berger, Klingenberg, Rauch

and Toponogov implies that the universal covering manifold of M is homeomorphic

to a sphere. If M and M are both simply connected and M has codimension one,

then Flaherty has given conditions (cf. §3 below) on the second fundamental form

of M which forces M to be a homotopy sphere.

In this note we will extend this to higher codimensions and at the same time

weaken the assumptions on the second fundamental form of M and drop the as-

sumption of simple connectivity on M.

Our method is to use the Gauss curvature equation to prove inequalities re-

lating the sectional curvatures of a submanifold with the corresponding sectional

curvatures of the ambient manifold and the size of the second fundamental form

of the submanifold. These inequalities then imply that a submanifold of a pinched

manifold is also pinched (with a slightly worse pinching constant) provided that

its second fundamental form is small enough. The proofs of these inequalities are

elementary; they only involve completing the square.
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This note is an expanded version of a pleasant Saturday afternoon conversation

between the authors and Professor Bang-Yen Chen whose help we wish to acknowl-

edge. We would also like to thank the referee for his corrections and suggestions

on improving the exposition.

2. The inequalities. Let M be an n-dimensional (n > 2) submanifold isomet-

rically immersed in the Riemannian manifold M. At each point x G M the tangent

space to M at x will be written as TMX and the normal space to M at x as T1- Mx.

The second fundamental form hx of M in M at x is a symmetric bilinear form

TMX x TMX to T±MX. If a,..., en is any orthonormal basis on TMX, then the

length of hx is defined by

¡I) IIM2=    1,    IIMe^e;ii2 =  £

l<i,j<n

If P is a plane section of M at x, i.e. a two-dimensional subspace of TMX, then

denote by K(P) the sectional curvature of M at P, by K(P) the sectional curvature

of M at P and by h\p the symmetric bilinear from P x P to T^Mx obtained by

restricting hx to P x P. Let ei, e2 be any orthonormal basis of P. Then the Gauss

curvature equation can be written as

(2) K(P) = K(P) + (h(ei,ei),h(e2,e2)> - \\h(ei,e2

and the length of h\p is

p E IIMe«>e:/)ll
(3) i<¿,i<2

= !IMei,ei)||2 + 2||Mei,e2)||2+||/i(e2,e2)||2.

Clearly ||/i|p||2 < ||/iz||2- Our estimates are

PROPOSITION 1.   If P is a plane section of M, then

K(P)-\\\h\\2<K(P)-\\\h\P\\2<K(P)

<K{P) + \\\h\P\\2<K{P) + \\\h\\2.

PROPOSITION 2.   If M is a minimal surface in~M, then

K{P)-\\\h\\2 = K{P)<K{P).2ii"ii       "V* ; — "v i-

PROPOSITION 3.   If M is a totally umbilic surface in M, then

K(P)<K(P) = K(P) + i\\h\\2.

PROPOSITION 4. If M is a Kaehler manifold and M is a Kaehler submanifold
of M, then for every holomorphic plane section P of M

K(P) - ±\\h\\2 < K{P) - \\\h\P\\2 = K{P) < K(P).

REMARKS. Propositions 2 and 3 show that the inequalities in Proposition 1

are sharp in the case that M is two-dimensional. By considering cylinders over

minimal surfaces or umbilic surfaces in Euclidean space it is possible to show that

the inequalities in Proposition 1 are sharp in all dimensions. Proposition 4 is a

restatement of Proposition 9.2 in Volume 2 of [K-N], It is included here because of

its relation to the other results.
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PROOF. Let ei,e2 be an orthonormal basis of P. Let X = h(ei,ei), Y =

h(ei,e2) and Z — h(e2,e2). Because of equations (2) and (3), to prove Proposition

1 it is enough to show that

-(||X||2 + 2||F||2 + ||Z||2) < 2{(X, Z) - \\Y\\2) < \\X\\2 + 2\\Y\\2 + \\Z\\2.

This follows at once from the identities

||z||2 + 2||Y ||2 + ||Z||2 - 2({X, Z) - \\Y\\2) = \\X - Z\\2 + 4\\Y\\2 > 0,

2((X, Z) - \\Y\\2) + \\X\\2 + 2\\Y\\2 + \\Zf = \\X + Z\\2 > 0.

If M is a minimal surface and x € M, then let ei,e2 be an orthonormal basis

of TMX. Because M is minimal the mean curvature vector of M is zero so 0 =

Mei,ei) ±h{e2,e2) = X + Z (X,Y, Z as above). Using Z = -X in (2) yields

K{P) = K{P) - \\X\\2 - \\Y\\2 and in (1) it yields \\h\\2 = 2\\X\\2 + 2\\Y\\2. These
two equations imply Proposition 2.

If M is a totally umbilic surface, then by definition Y = /i(ei,e2) = 0 and

X = h(ei,ei) = h(e2,e2) = Z. Thus K{P) = K(P) + |[X||2 and \\h\\2 = 2\\X\\2.
This proves Proposition 3.

3. Submanifolds of pinched manifolds. If M is a Riemannian manifold and

0 < 6 < 1, then M is said to be ¿-pinched if and only if there is a positive constant

Ko such that 6Ko < K(P) < Ko for all plane sections P of M. It is clear that

the above results can be used to relate pinching (or holomorphic pinching) of a

manifold to pinching (or holomorphic pinching) of its submanifolds. For example,

Proposition 1 easily implies

_ _
PROPOSITION 5.   Let M be a Riemannian manifold with 6 < K(P) < 1 for all

plane sections of P of M and let M be a submanifold of M so that \\h\p\\2 < B2

for all plane sections P of M. Then all the sectional curvatures of M are in the

interval [6 - \P>2,8 + \B2\. Thus if B2 < 28, then M is ÔM-pinched with

_ 6 - B2/2     26 - B2

M ~ 1 + B2/2 ~ 2 + B2 '

COROLLARY. If 6 > \ and M is complete with \\h\P\\2 < (8¿-2)/5 for all plane

sections P of M, then M is 8m -pinched for some 8m > \ and thus its universal

covering manifold is homeomorphic to a sphere.

We now give a statement and an elementary proof of the theorem of Flaherty

mentioned above.

THEOREM [F]. Let M be a complete, simply connected, Riemannian manifold

of dimension at least three that has all its sectional curvatures in the interval [8,1]

with 6 > ^ (this implies M is homeomorphic to a sphere). Let M be a simply

connected hypersurface of M such that the second fundamental forms of M with

respect to one of the two outward unit normals have their eigenvalues in [0,B],

where B < cot(7r/(4v/é)). Then M is a homotopy sphere.

To prove this theorem we first note that if all of the eigenvalues of the second

fundamental form of a hypersurface M are in the interval [0, B] for one of the two
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choices of the outward normal, then for all plane sections P of M,

(X)K(P)>K(P),
(B)\\h\P\\2<2B2.

(The first follows from the Gauss equation and the assumption that the eigenvalues

are > 0. For the second use that eigenvalues of h\P are also in the interval [0, B]

and so ||fo|p||2 = A2 + A2 < 2I?2.)   The conditions (A) and (B) make sense for

submanifolds of any codimension.

Proposition 1 now implies

PROPOSITION 6. Let M be a Riemannian manifold with all its sectional curva-

tures in the interval [8,1] with S > 0. Let M be a complete submanifold of M that

satisfies the conditions (A) and (B). Then the sectional curvatures of M are in the

interval [8,1 + B2] and thus M is 6M-pinched with 8m = 8/(1 + B2).

COROLLARY. If 6 > \ and B2 < A8 - 1 in the last proposition, then M is

8m -pinched for some 6m > \- Therefore the universal covering manifold of M is a

sphere.

To show that this corollary implies Flaherty's theorem, it is enough to show that

\ < 6 < 1 implies cot2 (n / {4y/8)) < 4<5 -1. Since 0 < cot(tr / {4y/8)) < 1 for 6 in the

given interval, the required inequality is implied by cot(7r/4\/¿) < 4¿ — 1. Letting

x = l\/é we want f(x) = 4x~2 — cot(7ri/4) — 1 > 0 when 1 < x < 2. It is enough

to show / has no zero on [1,2). At a zero of /, we have 4x~2 — 1 = cot(7rx/4) < 1.

This inequality implies x > y/2. Thus we only need to show f(x) / 0 on [\/2,2).

On this interval

rll    \ 8 IT 2 fn    \ 8 7T 2 ¡It    \

f (*) = —s + 4 CSc2 ( 4 X) Î "i sA2 + 4 CSC   ( r) X=V2

= -1.0 +.978262725 <0.

Therefore / is decreasing on [\/2,2) and /(2) = 0. Consequently, f(x) > 0 on [1,2)

as claimed.
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