
PROCEEDINGS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 95. Number 1, September 1985

UNIQUENESS RESULTS FOR GROUPS OF

MEASURE PERSERVING TRANSFORMATIONS

ROBERT R. KALLMAN

Abstract. Let G be the group of measurable, invertible, measure preserving

transformations either of the unit inverval or of the line. Then G has a unique

topology in which it is a complete separable metric group.

1. Introduction. Let G, be the group of measurable, invertible, measure preserving

transformations of the unit interval, and let G2 be the group of measurable,

invertible, measure preserving transformations of the line. G, and G2 are complete

separable metric groups in the coarse topology. For each positive integer n > 1, let

Kn be either Gx, or G2, or the identity. Let K = Tl„>xKn. Kin a. natural manner is a

complete separable metric group. The purpose of this paper is to prove the following

theorem.

Theorem 1.1. Let H be a complete separable metric group, and let \¡/\ H -» K be an

algebraic isomorphism. Then ip is a topological isomorphism.

This result seems to be new even if K has only one nontrivial factor. Note that

Theorem 1.1 really says something about K, for the analogous statement for the

additive group of the reals or the circle group is false. There does not seem to be any

precedent for this result in the literature.

The proof of Theorem 1.1 is carried out in §2. It is a consequence of the theory of

functions with the Baire property (Kuratowski [2]). §3 is devoted to a corollary of

Theorem 1.1, namely, that there is no standard Borel group structure on the abstract

group K which admits a a-finite Borel measure v so that v and all its translates have

the same null sets (provided K is not the identity). This provides an alternative proof

and generalization of a result of R. J. Aumann (and independently, H. Furstenberg)

[11.
One naturally might ask if there is an analogue of Theorem 1.1 if each Kn is a

group of measure preserving homeomorphisms or diffeomorphisms on a decent

space which satisfies certain (hopefully) mild requirements. This is indeed the case,

though the manner of proving such an analogous result is quite different in character

from the proof of Theorem 1.1.
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2. Proof of Theorem 1.1. As is usual in this subject, notions such as equality,

contained in, etc., are understood to be true if they are strictly true modulo sets of

Lebesgue measure zero. Time and again use is made of the fact that two measurable

sets of the same positive finite measure may be interchanged by a measure preserv-

ing transformation which is the identity off their union.

Theorem 1.1 is proved gradually in a sequence of lemmas which apply to special

cases. Until further notice, assume that K has only one nontrivial factor G. If A is a

set, Ac denotes its complement. For any measurable subset A of the line or unit

interval, let G(A) = [g in G\g is the identity on Ac].

Lemma 2.1. The centralizer ofG(A) in G is G(AC). xP~\G(A)) is closed.

Proof. G(Ac) certainly is contained in the centralizer of G(A) in G. Conversely,

suppose g commutes with every element of G (A). If g \ A is not the identity, then

there is a measurable subset B of A of very small positive measure so that g(B) and

B are disjoint. Choose an element h of G(A) which maps B onto a subset h(B) of A

which is disjoint from B and g(B), and which is the identity off of B and h(B). Then

g(h(B)) = h(g(B)) = g(B), which implies that h(B) = B. Contradiction. Hence,

g\A must be the identity. \p'x(G(A)) is the centralizer of \p'l(G(Ac)) in H, and so

\tj~1(G(A)) is closed. This proves Lemma 2.1.

If A and B are measurable sets of positive measure, let C(A, B) = [g in G\g(A) is

contained in B], The set C(A, B) is a closed subset of G.

Lemma 2.2. The set C(A,B) = [g in G\every ghxg~l commutes with every h2, where

hx is in G(A) andh2 is in G(BC)].

Proof. Every ghxg~l commutes with every h2 if and only if every ghxg~l\Bc is the

identity, if and only if every hxg~1\Bc = g^lB1', if and only if g~l(Bc) is contained

in Ac, if and only if g(A) is contained in B. This proves Lemma 2.2.

Corollary 2.3. The set \P~\C(A, B)) is closed.

Proof. By Lemma 2.2, \P~L(C(A, B)) = [ h in H\every hhxh~l commutes with

every h2, where hx is in 4l~l(G(A)) and h2 is in ip'1(G(Bc))]. Thus, it is now obvious

that \p~l(C(A, B))is closed in H, and Corollary 2.3 is proved.

Let p be Lebesgue measure. Let A be a measurable subset of positive finite

measure, and let ßbea measurable set of finite measure which contains A, and so

that \ > p(A) > ¡i(B - A) = 8 > 0.

Lemma 2.4. The set G(AC) ■ C(A, B) = [g in G\p(A A g(A)) < 25], and hence

G(A') ■ C(A, B) is closed. ^-\G(A") ■ C(A, B)) is an analytic subset ofH.

Proof. Let gx be in G(Al) and g2 in C(A, B). Let C = g2(A) r\(B - A) and

D = A - g2(A). Then ¡i(C) = n(D), A A g2(A) = C U D, and ¡x(A A gxg2(A)) =

fi(Aàg2(A)) = p(CU D) = 2p(C) *ï 20.
Conversely, let C = A U g(A). Since ¡j.(A A g(A)) < 28, fi(C') < p(A) + 5.

Choose a measurable set C which contains C so that ¡x(C — A) = 8, and choose g,

in G (A1') so that gx(B) = C. Then gx~lg(A) is contained in B, gxlg is in C(A, B),
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and g = gi- g{lg. This proves that G(AC) ■ C(A, B) = [g in G\p(A A g(A)) < 25].

From this it easily follows that G(AC) ■ C( A, B) is closed.

yp~1(G(Ac)) and \¡i~l(C(A, B)) are closed subsets of H by Lemma 2.1 and

Corollary 2.3. ^-\G(AC) ■ C(A, B)) is the continuous image of ^-\G(AC)) X

\p'l(C(A, B)), and so is an analytic set. This proves Lemma 2.4.

Proof of Theorem 1.1. Sets of the form [g in G\p(A A g(A)) < X], where A is a

measurable set of finite positive measure, and their translates generate the topology

of G. Hence, each open subset of G is in the a-algebra generated by the translates of

the sets G(AC) • C(A, B) of Lemma 2.4. Hence, if B is a Borel subset of G, ^^(B) is

in the a-algebra generated by the analytic subsets of H, by Lemma 2.4.

The remainder of the proof of Theorem 1.1 in this special case may now be carried

out in standard fashion. Results from Kuratowski [2] imply that there is a residual

set H' in H such that \p\H' is continuous. It follows that ^ is actually continuous on

all of H. To see this, let hn (n > 1) and h be elements of H so that hn -* h. The

union of h'1(H - H') and of the h~1(H - H') (n > 1) is a set of first category.

Hence, there is an element h' in the complement. Then hh' is in H' and hnh' is in H'

(n > 1). But h„W -» hh' and so \p(h„h') -» xp(hh'). Hence, t//(/i„) -» $(h). Hence, ty

is continuous. Souslin's theorem implies that ^-1: G -» H is a Borel mapping, and

so, repeating the above argument, xp'1 is continuous. Hence, ^ is a topological

isomorphism, and Theorem 1.1 is proved in this case.

To prove Theorem 1.1 in general, fix a positive integer jj > 1, let U be open in Kn,

let K'„ = nm>1,„,^^m, i/„ = r\K„), and tf„' = f(0 H„ and #„' are closed in

H, for each is the centralizer of the other. Hn and H'n intersect in the identity, and

H = Hn ■ H'n as an abstract group. Hence, the argument given in the previous

paragraph, for instance, shows that H = Hn X H'n is a topological group. By the

special case already proved, ty~\U X K'n) = ^~X(U) X H'n is an open subset of H.

Since the topology of K is generated by sets of the form U X K'n, \p is continuous.

The proof of Theorem 1.1 may now be finished off by the same argument used in

the previous paragraph.

3. Nonexistence of quasi-invariant measures. See Mackey [3] for the background

on standard Borel groups used in the following corollary.

Corollary 3.1. Suppose the K of Theorem 1.1 has at least one nontrivial factor.

There is no analytic Borel structure 36 on K, with respect to which K is an analytic Borel

group, and which admits a a-finite Borel measure v on SS, all of whose left translates

under K have the same null sets. In particular, K cannot be given the structure of a

locally compact group with a countable basis for its topology.

Note that there is no a priori reason to believe that 38 has any connection with any

topological group structure on K. A weaker result has been proved by R. J. Aumann

(and independently, H. Furstenberg) [1] by quite different methods.

The following simple lemma is needed first.

Lemma 3.2. If K has a nontrivial factor, then K is not locally compact.
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Proof. It suffices to prove this for G,. For each integer n, let C„ = {0,1}, viewed

as a discrete topological space with a measure which assigns measure \ to each

point. Let C = Yl„Cn, a compact metric space and a measure space with the product

measure. The infinite symmetric group Sx acts on C by permuting coordinates and

preserves the product measure. Check that the natural mapping of Sx into the group

of measure preserving transformations of C is in fact an embedding. Since C with

the product measure is the same measure theoretically as the unit interval with

Lebesgue measure, the proof of the lemma is finished once one notes that Sx is not

locally compact, for any neighborhood of the identity in Sx contains a subgroup

which has unbounded orbits on the integers.

Proof of Corollary 3.1. Suppose that there is some analytic Borel structure Sä

on K, with respect to which K is an analytic Borel group, and which admits a a-finite

Borel measure v on 3ë, all of whose left translates under K have the same null sets.

Theorem 7.1 of Mackey [3] implies that K can be made into a locally compact group

with a countable basis for its topology, and so that 38 is the collection of Borel sets

with respect to this topology. But Theorem 1.1 implies that K has a unique topology

in which it is a complete separable metric group. Lemma 3.2 implies that this

topology is not locally compact. Contradiction. This proves Corollary 3.1.
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