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THE CARTAN MATRIX AS AN INDICATOR

OF FINITE GLOBAL DIMENSION FOR ARTINIAN RINGS

W. D. BURGESS1, K. R. FULLER, E. R. VOSS AND B. ZIMMERMANN - HUISGEN

Abstract. A left serial ring has finite global dimension if and only if its Cartan

matrix has determinant equal to 1.

1. Introduction. A slight modification of a counting argument given by Eilenberg

(see [2, Proposition 21; 13, Proposition 1.1]) three decades ago shows that the

determinant of the Cartan matrix C of a left artinian ring R of finite global

dimension is always 1 or -1. No instances are known in which the value -1 is

attained. In a recent paper, Zacharia [14] proved that the determinant is, in fact, 1

whenever gl dim R < 2. We continue this line by establishing det C = 1 for left

serial rings of finite global dimension. What is more surprising is the fact that,

conversely, det C = 1 guarantees finite global dimension for any left serial ring. This

provides a simple finitary procedure for determining whether a left serial ring is of

finite dimension. The latter implication does not extend to arbitrary left artinian

rings; we exhibit an example which deviates "as slightly as possible" from being left

serial, but which nevertheless combines det C = 1 with infinite global dimension.

The phenomenon just described already occurs for artinian rings of Loewy length

2. On the other hand, for Loewy length 2, the Cartan matrix as a whole still reflects

whether or not the global dimension is finite; this was observed by Jans and

Nakayama [8, Proposition 10]. It is natural to look at Loewy length 3 next. Here,

knowledge of the Cartan matrix no longer suffices for the distinction between finite

and infinite global dimension; in fact, we construct two artinian rings of Loewy

length 3 with identical Cartan matrices, one of which has finite, the other infinite,

global dimension.

It is still open whether finite global dimension implies det C = 1 for all left

artinian rings. The positive answers in the special cases gl dim R < 2, R left serial, R

of Loewy length < 2 are based on the existence of a simple left module of projective

dimension < 1 (discarding the corresponding primitive idempotent gives rise to a

finite induction). Our final disillusioning example demonstrates that this road will

not lead to a positive decision in the general setting.

Throughout, R will denote a left artinian ring with Jacobson radical J, and

{e,,... ,en) will be a complete orthogonal set of pairwise nonisomorphic primitive

idempotents. In particular, the isomorphism types of the simple modules (module
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stands for left module unless otherwise indicated) are S1}...,Sn where S, = Re/Je¡.

Recall that the Cartan matrix C = C(RR) is the n X n matrix with integral entries c,

which are defined as follows: ctj is the number of copies of the simple module S¡

appearing in a composition series for Rej. Clearly, the ring R has the same Cartan

matrix as its basic ring. Moreover, if R = Rx X R2 is a ring decomposition, C is a

block diagonal matrix with blocks C(RX) and C(R2). Hence, in the sequel we may

always assume that R is basic and indecomposable.

2. Left serial rings. Recall that a left artinian ring R is called left serial if each of

the indecomposable projective modules Re¡ is uniserial, that is, contains a unique

composition series. Serial rings are rings satisfying this condition on both sides.

Examples of serial rings can, for instance, be found in [4] and [11]; for examples of

left serial rings which are not serial, see [9].

The sequence Rey,...,Ren is called a (left) Kupisch series if Re¡ is a projective

cover of Jei+l for 1 < í < « — 1, and Ren is a projective cover for Jel or Jel = 0. By

[10] such series exist whenever R is serial; if R is QF also, then all Re¡ have the same

composition length [11, Theorem 19]. Thus, the following computation yields, in

particular, the Cartan matrices of QF serial rings.

Lemma 1. Let R be left serial, and suppose that R has a Kupisch series Rely..., Ren,

all of whose members have the same composition length m. Write m = an + r with

0 < r < n. Then C has the following form:

' a + 1 if0^j-i<rorn-r<i-j^n,
c ■

IJ      I a otherwise.

(In other words, for r > 0, the matrix C has entries a + 1 on the main diagonal, on

the next r — \ superdiagonals, and on the subdiagonals from n — r + 2 down, and

the remaining entries are all a.)

Proof. The sequence of composition factors of Rej is &, S~y,..., SM„_1), Sj,

Sjzif ■ ■, (k stands for the least positive remainder of k modulo n); it continues for

m terms. Thus, there are a + 1 copies of the first r candidates in the list and a copies

of the others.    D

The matrices described in Lemma 1 are types of circulant matrices. We record a

special case of [1, Problem 27, p. 81] as

Lemma 2. Let C be a matrix as in the previous lemma. Then

( m if gcd( m, n ) = 1,
det C = { )        (

{ 0 // gcd( m, n ) ¥= 1.

Lemma 3. If R is left serial with a simple module of finite projective dimension, then

R has a simple module of projective dimension < 1.

Proof. Either R has a simple projective module, or the minimal projective

resolution of a simple module of finite projective dimension > 1 provides us with a

proper monomorphism O -* Re¡ -» Äe whose image is Jmeh say. In the latter case,

if Rek —> Jm~lej -* 0 is a projective cover, g induces a split epimorphism Jek —> Jme]

= Re¡. But Jek is indecomposable, and hence this is an isomorphism. It follows that

Rek/Jek has projective dimension 1.    D
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One direction of the equivalence in the next lemma is due to Zacharia [14, Lemma

2]; the inequality appears in Gustaf son [7] with the added hypothesis that R be serial

and gl dim R < oo. In establishing the bridge between Cartan matrix and global

dimension, we will use it to successively reduce the number of primitive idempotents.

Lemma 4. Let R be left serial and e = I - ev Provided that p dim Sx < 1, the left

global dimension of R is finite if and only if the left global dimension of eRe is finite,

and 1 gl dim R < 1 gl dim eRe + 2.

Proof. First suppose that 1 gl dim eRe is finite.

If pdim Sx = 0, we have Jex = 0; if pdim Sx = 1, then Je1/J2e1 * Sv In both

cases we find Ext1(51, 5,) = 0.

Now let i # 1 and pdimeReeS¡ = m. In order to verify that pdim S¡ ^ m + 2,

consider a projective resolution

h h /o
... —> p- —> p     —>■••—»p->p—>ç—>o

of S¡, where all the Pk are indecomposable. As Zacharia [14, p. 355] observed (note

that his argument for p dim S, = 1 works equally well for p dim S, = 0), the

sequence

• • •  -» ePk -» ePk_l -» • ■ •  -» ePx -> eP0 -* eS, -* 0

is then an eÄe-projective resolution of the eRe-module eS¡. In particular, fm{ePm) is

projective and nonzero. Since ePm is indecomposable, we infer thaXfm\eP is monic.

Set T = Soc Pm.

If T £ Sv we have 0 # fm(eT) c fJT), whence fm: Pm -» Pm_1 is also monic,

and pdim S, ^ m.

If T = Sx, we invoke Ext^S,, 5,) = 0 to obtain a submodule L of Pm, namely

L = Soc2 Pm, such that L/T * Sv From 0 * fm(eL) ç fm(L), it follows that L $

ker/m and, consequently, ker/m ç L. From ker/m ¥= L we conclude further that

ker/m equals either T or 0. In the latter case we have pdim S¡ < m as above. In the

former we obtain an exact sequence

0 - Je, - Re, -* Pm h ■ ■ ■ -> P0 -* S( - 0,

which, in view of the projectivity of Jex, yields p dim S¡ ^ m + 2.

Conversely, finiteness of lgldim R implies finiteness of \g\dimeRe, since, as we

have already remarked, multiplication of an /^-projective resolution of a simple S¡

(i ^ 2) by e results in an eRe-projective resolution of eS¡.   D

The last of our preparatory lemmas is due to Zacharia [14, Theorem B]. We

include a particularly simple argument.

Lemma 5. Suppose that the projective dimension of Sx = Rel/Je1 is < 1 and set

e = 1 - ev Then det C(eRe) = det C(R).

Proof. By hypothesis,

Je1 = {Re2)mi ®  ■■■ ®(Re„)m"    with m,> 0.
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Denoting the jth column of the Cartan matrix C of R by

(Cy\

\cmj

we obtain

c, =
0

0

+ £ mjC¡.

J = 2

Thus, subtraction of m} times they th column from the first column for y = 2,...,n

yields the matrix

w C\2

0     c22

0     c»2

-In

"nn I

and consequently,

(c

det C = det

22

\C„2 nn I

But the latter matrix is the Cartan matrix of eRe.    D

Recall that the quiver of a left artinian ring R is a directed graph with vertices

el,...,en and precisely r arrows e, —> ey if Jei/J1ej contains r copies of Sj (see, for

example, [6, pp. 88, 119]). Since our ring is indecomposable, its quiver is connected

as an undirected graph.

In the case of a left serial ring, the quiver has a particularly tractable form: it is

either a rooted tree or a graph obtained from a rooted tree by replacing its root by

an oriented cycle. (Here we go against the usual convention by having the arrows

point towards the root).

A i   i

I

É

'"'\V i• i»

V. J

/
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To see this, we first note that R is left serial if and only if at most one arrow

emanates from any given vertex. As in [5], a quasi-order can be introduced on the set

of vertices via e, < ey if i = j or if there is an oriented path from e. to e¡. Let ex be a

minimal element with respect to this quasi-order, and consider the set 5 = {e¡\e¡ «s

e,}; together with the arrows between these vertices, S either forms an oriented cycle

or a loop O, or else a graph consisting just of one point •. Since there are never two

arrows leaving a given vertex (and since the underlying undirected graph is con-

nected), any vertex belonging to a cycle or a loop lies in S.

Now weight each vertex e¡ by the composition length c, of Re¡. Then the weights

along an oriented path in the quiver of a left serial ring R behave like the admissible

sequences of serial rings [4]. More precisely, if e¡ -» e¡ is an arrow in the quiver, that

is, Rej is a projective cover of Je¡, then clearly cy ̂  c, — 1, and c¡ = c,■ — 1 if and

only if p dim Re¡/Je, = 1.

The following remark evokes the situation described in Lemma I. If ex = e¡ -> e¡

-» • • • -* e¡ -» e1 is an oriented cycle, then Rei is a projective cover of Je¡ and

Re¡ is a projective cover of Je, ; in particular, the only simple factors appearing in

the composition series for the Re¡ are S¡, S¡,...,S¡ . Moreover, absence of candi-

dates with projective dimension < 1 among the Sj forces all the composition

lengths c,   to be equal.

Theorem 6. Given a left serial ring R, the determinant of its Cartan matrix is 1 //

and only if its left global dimension is finite. In any case the determinant is nonnegative.

Proof. We revert to the usual restrictions on R. If lgldimÄ < oo, then the

combination of Lemmas 3-5 allows successive elimination of primitive idempotents

corresponding to simple modules of projective dimension < 1 until we are left with

one idempotent. But, in this situation, finite global dimension is tantamount to

semisimplicity, whence det C = 1.

Now assume that lgldim R = oo. By induction on the number n of primitive

idempotents we will show that either det C = 0 or det C > 1. The case n = 1 is

trivial. For the induction step we may start with n > 1 primitive idempotents e¡,

none of which gives rise to a simple module Rei/Jei of projective dimension < 1

(otherwise Lemmas 4 and 5 would permit us to discard one idempotent and invoke

the induction hypothesis). That the quiver of R is a tree is impossible, since its root

would correspond to a projective module of length 1. Therefore the quiver contains a

cycle or loop with vertices e1,...,ek (k > 1), say. Since the composition series of

Re,,... ,Rek involve only the simple modules Sx,...,Sk, the Cartan matrix of R has

block form
~C,     X

0     C2\

where C, is a k X k matrix as treated in Lemmas 1 and 2, whence det C, = 0 or

det Cj > 1. Note that C2 is the Cartan matrix of eRe, where e = 1 — e, — • • • — ek.

If 1 gl dim eRe < oo, we have det C2 = 1 by the first part of the proof otherwise the

induction hypothesis yields det C2 > 0. In either case, det C = (det C,)(det C2) is

either zero or greater than 1.    □
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Corollary 7. Let R be an Artin algebra which is left or right serial, and let C be its

left Cartan matrix. Then det C = 1 ;/ and only if gl dim R < oo. In any case

det C > 0.

Proof. It suffices to note that in the case of an Artin algebra the left and right

Cartan matrices have the same determinant. This follows from a straightforward

modification of an argument due to Nakayama [12, Theorem 3].    CI

3. Negative examples and positive remarks. For any left artinian ring, finite left

global dimension narrows the range of possible values for det C to +1 (see [2,

Proposition 21; 13, Proposition 1.1]).

Our first two examples demonstrate that both +1 and -1 can also occur as

Cartan determinants of artinian rings of infinite left global dimension. The examples

we exhibit are both algebras over a field F of Loewy length 2 and F-dimension 5

(one can easily convince oneself that F-dimension 5 is the lowest possible for either

of these phenomena to occur). An example featuring det C = -1 was already given

by Eilenberg, Ikeda and Nakayama in [3]; however, their example is of dimension 12

over the base field.

Example 8. Combining infinite global dimension with det C = 1. Let F be any field

and R the subring of M4(F) consisting of all matrices of the form

u

b
0
0

0
0
b
0

where a, b, u, v,w e F.

en + e44 and e2 e22 + £33 • It is straight-R has two primitive idempotents: ex

forward to check J2 = 0, exJex ¥= 0, e2Jex ¥= 0, exJe2 ¥= 0 and e2Je2 = 0, whence

Jex = Sx e S2 and Je2 = 5: (again, we set S¿ = ReJJe,). It follows that gldim R =

00, whereas C = [2 \]   D.

Example 9. Combining infinite global dimension with det C = -1. Starting again

with a field F, this time we let R be the subring of MS(F) consisting of all matrices

of the form

0

b
0
0
0

u

0
b
0
0

b* 0

where a, b, u, v,w e F.

Putting ex = eu + e55 and e2 = e22 + eM, we obtain Jex = S2 and Je2 = Sx ffi Si,

whence gldim R = 00 and C = [} f],    D

Even though, for general artinian rings of Loewy length 2, the determinant of the

Cartan matrix fails to distinguish between finite and infinite global dimension, the

Cartan matrix as a whole still does. In fact, from a result of Jans and Nakayama [8,
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Proposition 10], it follows that, given a left artinian ring R of Loewy length 2,

1 gldim/? < k « (C- I)k + 1 = 0

and

lgldimÄ < ce *» (C -/)" » 0;

here / denotes the n X n identity matrix. We include a very short and elementary

argument for a mild reinforcement of these equivalences.

Remark 10. IfJ2 = 0, the following statements are equivalent:

(a) 1 gldim R < oo;

(b) C is an upper triangular matrix with entries 1 along the main diagonal {for a

suitable arrangement of the primitive idempotents).

In any case, the projective dimensions of the simple modules can be read off the

columns of the Cartan matrix as follows: The columns containing a 1 in position

(j, j) and 0 elsewhere correspond to the simple projectives Rep say this occurs for

the columns with indices j in D0. The columns of index j £ D0 containing a 1 in

position (j, j) and additional nonzero entries only in the positions (/, j), with

/ G D0, correspond to the projectives Rej such that p dim S,, = 1; say this is the case

for the columns with indices j in Dv For, columns with indices y Í D0 U F>,

containing a 1 in position (j, j) and further nonzero entries only in the positions

(/, j), with / e D0 U £>,, correspond to the projectives Rej such that pdim Sj = 2.

When this procedure of successively filtering out the simple modules of projective

dimension 0,1,2,3,... comes to a halt, the leftover columns correspond to the

projectives Re: such that pdim Sj — oo.

Proof. J2 = 0 implies /<?, = S{" © ■ ■ ■ © S%" with tjn > 0. Thus, p dim Sj = k <

oo is tantamount to t,¡ = 0 and sup{pdim S¡: t]t # 0} = k - 1. If we arrange the

primitive idempotents such that pdim 5 < pdim SJ+1, the claimed equivalence

follows immediately, and so does the supplementary statement.   D

Our final example settles two issues with one stroke. On the one hand, it shows

that, among the left artinian rings of Loewy length 3, knowledge of the Cartan

matrix no longer suffices to determine whether the left global dimension is finite. On

the other hand, the first of the rings we construct has finite global dimension, but

does not have any simple modules of projective dimension < 1. This contrasts with

the rings we studied in §2, with the case J2 = 0, and with the rings investigated by

Zacharia [14].

Example 11. Let F be any field.

(a) Let R be the subring of M1(F) consisting of all matrices of the form

c 0 x u w m    q

0 b y 0 v 0      r

0 0 a 0 z Oí
0 0 0 b 0 «     0
0 0 0 0 b 0     0
0 0 0 0 0 c     0
0 0 0 0 0 0c
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There are three primitive idempotents; e, = e33, e2 = e22 + e44 + e55, e3 = en +

e66 + e77, and the corresponding projective left modules Rej have the following

structure: Je, s S2 © S3, Jé>2 = Re, © S3, 7e3 = Re, © L with L/JL = S2 and /L

= Sv From this information we derive projective resolutions of the simple modules

0 ->Re,->-Re,     ©     Re,-^ Re,-^ S,->■ 0

V    \¿
(p dim S3 = 2),

0->Jei-^Re,      ©     Re3-> Re2->■ S2->-0

X..S
V*2

(p dim S2 = 3),

0-^Je2     ©     Je3-^Re2     ©     Äe3 -    —>Jte, ~    ->S: -   -> 0

7e,

(p dim S, = 4).

In particular, we see that gl dim R = 4. Moreover, counting composition factors

yields the Cartan matrix

C =
1     1     1
1     2     2
12     3

(b) Modifying R by moving the entry n from position (4,6) to position (2,6), we

arrive at a ring R with gl dim R = oo (since 53 is isomorphic to a direct summand of

Je3) that has the same Cartan matrix as R.   □
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