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BIPOWERS IN NUMBER FIELDS

D. K. HARRISON

ABSTRACT. The set of all solutions to the Fermât equation is given a struc-

ture. This structure is then characterized up to isomorphism in terms of certain

subsets of the integers modulo a prime.

The purpose of this note is to add to the vast literature on Fermât 's last theorem

the structure (cf. [1]) which the set of solutions to that equation has. No claim is

made that this structure will help in determining whether nontrivial solutions exist,

but finding extra natural structure on an unknown set is a time honored approach in

general, which does not seem to have been overly tried for this particular theorem.

Our aim is to axiomatize the rational numbers in such a way that the subset

of Fermât solutions satisfies most of the axioms. Of necessity, the axioms will be

unusual. To ease the presentation, we give Theorem 1 about "contexts" first, then

indicate the proof, and only after this give the definition of what a context actually

is. This definition involves some 22 axioms, so the reader will probably want to

refer to each axiom only when it is used. The key axiom is (6) which hypothesises

an S^-action. Then with Theorem 2 we show that nothing is lost by our point of

view; in other words, the concept of a full context is the same as the concept of

a division ring. We omit the obvious extra axioms needed to make a division ring

isomorphic to the rational numbers (infinite but no proper full subcontext).

For p an odd positive integer and D a division ring, we say a G D is a nontrivial

p-bipower if a ^ 0, a / 1,

a = xp,     1 — a — yp,    x ■ y — y ■ x

for x,y e D.

THEOREM 1. Let p be an odd positive integer and D be a division ring. Let

Cp(D), or just C, be the set of all nontrivial p-bipowers from D. If a G C, then

t(a) = 1 — a is in C, and s(a) = a^1 is in C. Let

A = {(a,ß,1)\a,ß,1GC,a-ß-1 = l},

E = {(a,ß,1)\a,ß,1eC,a-ß-1 = l}.

If either p — 1 or D is a field, then a context results. If p = 1, it is full. If D is a

field, it is abelian.

PROOF. If a ^ 0, a ^ \, a = xp, 1 — a — yp, x ■ y — y ■ x, then one checks

a-1 = (x_1)p, 1 - a"1 = (-y ■ x~1)p and x~l ■ (-y ■ z"1) = (-y ■ x'1) ■ x~l. The

rest of the proof consists of a sequence of verifications, each of which is easily made.
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We now define a context to be a tuple (C, A, E, s, t) where C is a set, A and £

are subsets of C3, and s and t are maps from C to C, such that

(1) (a,/?, 7) e A imply (ß,~f,a), (s(1),s(ß),s(a)) G A;
(2) a,ß GC implies there exists at most one 7 with (a,ß,7) e A;

(3) (a,ß,7), (M,7)eA, (a,/?>)e£ imply (M,w)e£;
(4) (a,/?,7), (s(7),M), (/3,¿,w)eAimply (q,s(w), A) e A;
(5) A = S or A n S = 0;
(6) a e C implies s(s(a)) = a, t(t(a)) = a,t(s(t(a))) = s(t(s(a)));

(7) (a, 5(7), 7), (/?, s(6), 6) G S imply a = #

(8) a e C implies (a,t(s(a)),s(t(a))) G £;

(9) (a,ß,7), (s(t(s(a))), t(ß),S) G A imply (t(a), t(s(6)), S(í(5(7)))) e A;

(10) (a,/?, 7) e A implies s(a) ^ /?;

(11) (a,/3,7) e A implies there exists S with (s(t(s(a))),t(ß),6) G A;

(12) (a,/?,7), (a,7,¿), (a, *(/?), A), (a, A,w) e A imply t(6) = w;

(13) (a,s(t(ß)),ß) G A implies (a, 0, «(*(£))) e A;
and (1'), (2'), (3'), (4'), (12'), (13') which are formally identical to (1), (2),.. .,(13)

but with A and S interchanged.

If, in addition,
(14) a, ß G C, s(a) ^ ß imply there exists 7 with (a, ß, 7) e A,

then we say the context is full. If a context satisfies

(15) (a,/3,7) e A implies (ß, 0,7) e A; and

(15') (a,/?,7) e S implies (/3>,7) e E;
then we say the context is abelian. Note then (12), (12'), (13) and (13') are redun-

dant.

We now give a converse to the p = 1 case of Theorem 1.

THEOREM 2. Let C be a full context (actually, just the unprimed premises and

the first half of (1') suffice). Let D* be C with a formal symbol 1 adjoined. Define

1-1 = 1,    s(a) ■ a = 1,    a ■ 1 = a,     1 • a = a,

i(l) = l,     s(l) = 1,     a-/? = 7    if (a,ß,su)) e A

for all a, ß, 7 e C.  Then there exists a unique e G D* with a ■ e = t(a) ■ s(t(s(a)))

for all a GC. Let D be D* with a formal symbol 0 adjoined. Define

0a = 0,    a-0 = 0,    00 = 0,

0 + a = a,    a + 0 = a,    0 + 0 = 0,     and

a + b — a- t(s(a) ■ b ■ e)    if s(a) • 6 • e ^ 1,     and

a + b = 0    if s(a) ■ b ■ e — 1,

for all a, b G D*.  Then a division ring results. Also Ci(D) = C.

PROOF. First we show that D* is a group. Existence of an identity and inverses

are quickly checked. Let a, b, c G D*. We wish to check (a ■ b) ■ c = a- (0 • c). One

checks this when a = loro=lorc=lso without loss a = a, b = ß, c = 7 are

inC.
Case 1. s(a) — ß, 7 = a. Use (6).

Case 2. s(a) = ß, 7^0. Use (6), (14) and (1).

Case 3. 7 = s(ß), 7 = 0. Use (6).
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Case 4. 7 = s(ß), 7^0. Use (6), (14) and (1).

Without loss we can assume ß ^ s(a), s(ß) ^ 7. Let (a,ß,s(6)), (ß, 7, s(X)) G

A. We need to prove 6 ■ 7 = a ■ A.

Case 1. 6 = 0(7). Use (6), (1) and (2).

Case 2. a = s(X). Use (1), (2) and (6).

Case 3. 6 ¿ s(^), a £ s(\). Use (6), (14), (4) and (2).

We now prove, for a,ß GC,

s(a) ■ t(a) ■ s(t(s(a))) = s(ß) ■ t(ß) ■ s(t(s(ß))).

Case 1. a/ t(a), s(a) ■ t(a) ■ s(t(s(a))) / 1. By (14), (s(a),i(a),s(7)) e A

for 7 e C. Write S for s(t(s(a))). By (6) and (8), (s(a),t(a),6) G E. Since

s(a) ■ t(a) ■ 8 ¿ s(6), 7 / s(6) so 3(7) = 6. By (14), (1,s(s(S)),s(X)) G A for

AeC7. By(l), (A,S(0),S(7))eA. By (3),

(s(a) ■ t(a) ■ s(t(s(a))),s(6),6) GT,.

If ß / t(ß), s(ß) ■ t(ß) ■ s(t(s(ß))) ^ 1, the same argument on ß with (7) yields our

result. If ß ¿ t(ß), s(ß) ■ t(ß) ■ s(t(s(ß))) = 1, then s(ß) ■ t(ß) = t(s(ß)), so

(s(ß),t(ß),s(t(s(ß))))GA,

so by (8) and (5), A = E, which with (8) contradicts s(a) ■ t(a) ■ s(t(s(a))) ^ 1. If

ß = t(ß), by (8) and (1), (s(t(s(ß))),s(ß),ß) G E so (7) yields

s(t(s(ß))) = s(a) ■ t(a) ■ s(t(s(a)))

which with s(ß) ■ t(ß) = 1 gives our result.

Case 2. s(a) ■ t(a) ■ s(t(s(a))) = 1. One checks

(s(a),t(a),s(t(s(a))))GA

so, with (8) and (5), A = E, so by (8)

(s(ß),t(ß),s(t(s(ß))))GA,

so s(ß) ■ t(ß) = t(s(ß)), so s(ß) ■ t(ß) ■ s(t(s(ß))) = 1 which is our result.

Case 3. ß ^ t(ß). Interchange ß and a and proceed as in the last two cases.

Case 4. a = t(a), ß = t(ß). By (8),

(s(a), a, s(t(s(a)))), (s(ß), ß, s(t(s(ß)))) G E,

which with (1'), (7) and (6) gives a = ß, which gives our result.

We now prove for a, ß GC, s(a) ^ ß, that

t(a-ß)^t(a)-t(t(a^)-l-t(ß)).

Write 7 for a ■ ß and 0 for t(a"1)~1 ■ t(ß), which one checks is in C. Then (6) and

(9) give t(a) ■ t(6) = ¿(7), which is what we want.

We prove, for a,b G D*, that t(a ■ b ■ a-1) = a ■ t(b) ■ a-1. Clearly, without loss

a = aG C, b = ßeC.
Case 1. s(a) / ß, s(a) / t(ß). Using (14), there exists 7, A e C with

(a,ß,s(1)),(a,t(ß),s(X))GA.

If 7 = a, we would have a ■ ß = a or ß = 1. If A = a, we would have a ■ t(ß) = a

or r(ß) = 1. Hence by (14), there exists uj,tt G C with

(7, s(a), a(w)), (A, s(a), s(w)) G A.
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By (1), (6), and (12), t(u>) = ir, which is our result.

Case 2. s(a) — ß, s(a) ^ t(ß). As above,

(a,t(ß),s(X)),(X,s(a),s(ir))GA.

By (1) and (6),

(\,s(t(ß)),ß),(\,ß,S(ir))EA.

By (13) and (2), s(t(ß)) — s(n), so t(ß) = ir which is our result.

Case 3. s(a) G ß, s (a) = t(ß). As in Case 1, (a,ß,s(q)),(i,s(a),s(ui)) G A.

Using (1) and (6), one checks

(s(1),s(t(ß)),ß),(^s(t(ß)),s(1))GA.

By (13) and (6),

(S(7),/Mi(/?)))eA,

(s(t(ß)),s(1),ß),(s(t(ß)),s(1),oj)GA,

so by (2), ß = uj which is our result.

Case 4. s(a) — ß, s(a) — t(ß). By (6), t(s(a)) = s(a), which is our result.

Employing Theorem 3.3 of [1], Theorem 1 is now proved.

By a number context we mean a CP(F) where p is an odd prime and F is a

number field. Such is abelian and finite (by the recent positive solution to the

Mordell conjecture; see [2]). By a subcontext of a context C we mean a subset S of

C such that

a G S implies s(a), t(a) G S;

and

a,ß,i€S, (a,ß,i), (s(t(s(a))),t(ß),y) G A imply y G S.

One checks that such is a context in its own right, with the intersection of A and

E to S3 and with the restriction of s and t to S.

We will now prove that any number context is isomorphic to a subcontext of

a finite full abelian context; actually, we prove a stronger general representation

theorem. By a spread of classes we mean a pair (S,p) where p is a prime number,

and S is a subset of Zp such that 0^5, 1 g" S;

a G S implies a-1 and 1 — a are in S;

and

a,ßGS, aGß-S imply (1 - a) G (1 - ß) ■ S.

Each such is a subcontext of Ci(Zp) and thus is a context.

THEOREM 3. Let S be a number context. Then S is isomorphic to a spread of

classes.

PROOF. One checks that a subcontext of a subcontext is a subcontext. One

checks, if K is a field extension of a field F, then CP(F) is a subcontext of CP(K).

Let F be a number field and p be an odd prime, with S — CP(F). Let K be the

normal closure of F. 5 is a subcontext of CP(K) = T. By the Tchebotarev density

theorem (see p. 169 of [3]), K has infinitely many valuations of degree one. But

for all but finitely many valuations v of K,

v(a)=0,    v(t(a))=0,    v(t(ß-1))=0,

v(t(6-X-Lu)) =0,    v(t(-ß-ir-r)))=0,
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for all q e T, all ß, 7 e T with ß ■ 7 ¿ 1, all 6, A, w e T with <5 • A • w ̂  1 and all
/i, 7T, r/ e T with -/i • 7T • 7; 7^ 1. Hence such a v exists of degree one. Let A, P, k

be the valuation ring, maximal ideal, and residue class field, respectively, of v. Let

(j>: T —> C\(k) be the well-defined map a i—> a + P, for a e T. One checks that <^> is

injective. One checks that <j> commutes with s and t. One checks that

(<t>(a), tp(ß), 0(7)) e A    (respectively e E)

if and only if (a, ß, 7) G A (respectively e E). Finally, one checks the last condition

for being a subcontext.

Using Theorem 2 one gets (since a number field has no subfield of p-powers)

THEOREM 4.   A number context is itself full if and only if it is empty.
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