ON UNIMODULAR ROWS

MOSHE ROITMAN

ABSTRACT. We prove here, among other results, that if (x_0, \ldots, x_n) is a unimodular row over a commutative ring $A, n \ge 2, x \in A$ and

 $x \equiv x_n \mod J(Ax_0 + \cdots + Ax_{n-2}),$

then $(x_0, \ldots, x_{n-1}, x_n) \sim_E (x_0, \ldots, x_{n-1}, x).$

This note is based on Suslin's work on projective modules (see [1 and 3]). Among other results, we simplify the proof of Suslin's theorem concerning the completability of the unimodular row $(x_0^{r_0}, \ldots, x_n^{r_n})$, when $n!|\prod_{i=0}^n r_i$. More precisely, we simplify the reduction to the case $(x_0, x_1, x_2^2, \ldots, x_n^n)$.

All the rings here are commutative with unit. We denote by $U_n(A)$ the set of unimodular rows of length n over the ring A. If u, v are elements in $U_n(A)$, we denote $u \sim v$ if there exists a matrix α in $\operatorname{GL}_n(A)$ such that $u\alpha = v$. We have $u \sim (1, 0, \ldots, 0)$ if and only if u is completable to a matrix in $\operatorname{GL}_n(A)$. Similarly, we denote $u \sim_E v$ if there exists a matrix α in $E_n(A)$ such that $u\alpha = v$.

If I is an ideal in a ring A, we denote by J(I) the intersection of all the maximal ideals in A containing I.

LEMMA 1. Let A be a ring, $(x_0, \ldots, x_n) \in U_{n+1}(A)$, $n \geq 2$, and let y_{n-1} , y_n be elements of A such that $x_{n-1}y_{n-1} + x_ny_n$ is invertible modulo the ideal $Ax_0 + \cdots + Ax_{n-2}$. Then $(x_0, \ldots, x_{n-2}, x_{n-1}, x_n) \sim_E (x_0, \ldots, x_{n-2}, y_{n-1}, y_n)$.

PROOF. Let z_1, \ldots, z_{n-2}, t be elements of A such that

$$\left(\sum_{i=0}^{n-2} x_i z_i\right) + t(x_{n-1}y_{n-1} + x_n y_n) = 1.$$

Let $z_{n-1} = t(y_{n-1} + x_n)$, $z_n = t(y_n - x_{n-1})$ and $u = (z_0, \ldots, z_n)$. We have

$$(x_0,\ldots,x_{n-2},x_{n-1},x_n)u^t = (x_0,\ldots,x_{n-2},y_n,-y_{n-1})u^t = 1.$$

By [3, Corollary 2.8] we obtain

$$(x_0, \dots, x_{n-2}, x_{n-1}, x_n) \sim_E (x_0, \dots, x_{n-2}, y_n, -y_{n-1})$$

 $\sim_E (x_0, \dots, x_{n-2}, y_{n-1}, y_n). \quad \Box$

THEOREM 2. Let $(x_0, ..., x_n) \in U_{n+1}(A), n \ge 2$, let

$$I_{j} = J(Ax_{0} + \cdots + Ax_{j-1} + Ax_{j+1} + \cdots + Ax_{n-1})$$

Received by the editors September 28, 1984 and, in revised form, December 3, 1984. 1980 Mathematics Subject Classification. Primary 13D15, 18F25.

^{©1985} American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

for $0 \le j \le n-1$, and let $x \in A$, such that $x \equiv x_n \mod (I_0 + \cdots + I_{n-1})$. Then $(x_0, \ldots, x_{n-1}, x_n) \sim_E (x_0, \ldots, x_{n-1}, x)$.

PROOF. Let $x = x_n + t_0 + \cdots + t_{n-1}$, where $t_j \in I_j$ $(0 \le j \le n-1)$. It is enough to prove, for $0 \le j \le n-1$, that

$$(x_0,\ldots,x_{n-1},x_n+t_0+\cdots+t_{j-1})\sim_E (x_0,\ldots,x_{n-1},x_n+t_0+\cdots+t_j),$$

so we may assume $x \equiv x_n \mod J(Ax_0 + \cdots + Ax_{n-2})$. Let y_{n-1}, y_n be such that $x_{n-1}y_{n-1} + x_ny_n \equiv 1 \mod (Ax_0 + \cdots + Ax_{n-2})$. Then

$$x_{n-1}y_{n-1} + xy_n \equiv x_{n-1}y_{n-1} + x_ny_n \mod J(Ax_0 + \dots + Ax_{n-2}),$$

so $x_{n-1}y_{n-1} + xy_n$ is invertible mod $(Ax_0 + \cdots + Ax_{n-2})$. By Lemma 1 we have

$$(x_0,\ldots,x_{n-1},x_n)\sim_E (x_0,\ldots,x_{n-2},y_{n-1},y_n)\sim_E (x_0,\ldots,x_{n-2},x_{n-1},x).$$

We do not know if the assumption of Theorem 2 may be replaced by the assumption $x \equiv x_n \mod J(Ax_0 + \cdots + Ax_{n-1})$ or even by the assumption $x \equiv x_n \mod \sqrt{Ax_0 + \cdots + Ax_{n-1}}$ (see Propositions 5 and 6 below).

As pointed out by L. N. Vaserstein, Proposition 3 (and also the simplification in the proof of Suslin's theorem below) was already obtained in other ways in [5] and also by R. A. Rao-M. P. Murthy.

PROPOSITION 3 (CF. [3, §2 OR 1, CHAPTER V]). Let $(x_0, ..., x_n) \in U_{n+1}(A), n \ge 2$, and let $r_0, ..., r_n, r'_0, ..., r'_n$ be natural numbers such that $\prod_{i=0}^n r_i = \prod_{i=0}^n r'_i = r$. Then $(x_0^{r_0}, ..., x_n^{r_n}) \sim_E (x_0^{r'_0}, ..., x_n^{r'_n}) \sim_E (x_0^r, x_1, ..., x_n)$.

PROOF. By Theorem 2, we have, for any $s \ge 0$, that

$$(x_0^s,x_1,\ldots,x_n)\sim_E (x_0^s,x_1-x_0,\ldots,x_n), \quad ext{as} \ x_1\equiv x_1-x_0 \mod \sqrt{Ax_0^s}.$$

Furthermore, $(x_0^s, x_1 - x_0, \ldots, x_n) \sim_E (x_1^s, x_1 - x_0, \ldots, x_n) \sim_E (x_1^s, -x_0, \ldots, x_n) \sim_E (x_0, x_1^s, \ldots, x_n)$ so the proposition follows. \Box

THEOREM 4 (SUSLIN [5, THEOREM 2]). Let $(x_0, \ldots, x_n) \in U_{n+1}(A), n \ge 2$, and let r_0, \ldots, r_n be natural numbers such that $n! |\prod_{i=0}^n r_i$. Then, $(x_0^{r_0}, \ldots, x_n^{r_n}) \sim (1, 0, \ldots, 0)$.

PROOF. Let $\prod_{i=0}^{n} r_i = n!d$. Then, by Proposition 3 and [3, Proposition 1.6], we have $(x_0^{r_0}, \ldots, x_n^{r_n}) \sim_E (x_0^d, x_1^d, (x_2^d)^2, \ldots, (x_n^d)^n) \sim (1, 0, \ldots, 0)$. \Box

If u, v are in $U_n(A)$ we denote $u \leftrightarrow v$ for the property $u \sim (1, 0, ..., 0)$ if and only if $v \sim (1, 0, ..., 0)$.

PROPOSITION 5. For any ring A and $n \ge 2$, the following conditions are equivalent:

(1) For any (x_0, \ldots, x_n) in $U_{n+1}(A)$ and $x \in A$ such that

$$x \equiv x_n \mod \sqrt{Ax_0 + \cdots + Ax_{n-1}},$$

we have $(x_0,\ldots,x_{n-1},x_n) \leftrightarrow (x_0,\ldots,x_{n-1},x)$.

(2) If $x_0, \ldots x_n$ are elements of A such that x_n is unipotent

 $\mod (Ax_0 + \cdots + Ax_{n-1}),$

then $(x_0, ..., x_n) \sim (1, 0, ..., 0)$.

PROOF. $(1) \Rightarrow (2)$. We have

$$x_n \equiv 1 \mod \sqrt{Ax_0 + \cdots + Ax_{n-1}},$$

so $(x_0, \ldots, x_{n-1}, x_n) \leftrightarrow (x_0, \ldots, x_{n-1}, 1)$. As $(x_0, \ldots, x_{n-1}, 1) \sim_E (1, 0, \ldots, 0)$ we obtain $(x_0, \ldots, x_n) \sim (1, 0, \ldots, 0)$.

 $(2) \Rightarrow (1).$ Assume $(x_0, \ldots, x) \sim (1, 0, \ldots, 0).$ Let $y \in A$ such that $xy \equiv 1 \mod (Ax_0 + \cdots + Ax_{n-1}).$ Then $(x_0, \ldots, x_{n-1}, x_n) \sim_E (x_0, \ldots, x_{n-1}, x_n(xy)) = (x_0, \ldots, x_{n-1}, x(x_ny)).$ But $x_ny \equiv xy \equiv 1 \mod \sqrt{Ax_0 + \cdots + Ax_{n-1}}$, so x_ny is unipotent $\mod(Ax_0 + \cdots + Ax_{n-1}).$ By assumption, for any generators z_0, \ldots, z_{n-1} of the ideal $Ax_0 + \cdots + Ax_{n-1}$, we have $(z_0, \ldots, z_{n-1}, x_ny) \sim (1, 0, \ldots, 0)$, so $(x_0, \ldots, x_{n-1}, x(x_ny)) \sim (1, 0, \ldots, 0)$ by [3, Corollary 3.3]. Finally,

 $(x_0,\ldots,x_{n-1},x_n) \sim (1,0,\ldots,0).$

PROPOSITION 6. The two properties of Proposition 5 hold in each of the following cases:

- (1) n! is invertible in A.
- (2) Stably free A[X]-modules are extended from A.

(1) (See [3, Proposition 3.1 or 4, Theorem 1.6] and their proofs .) We prove property 2 of Proposition 5. Let $(x_0, \ldots, x_n) \in U_{n+1}(A)$,

$$x_n \equiv 1 \mod \sqrt{Ax_0 + \cdots + Ax_{n-1}},$$

 $(x_n - 1)^k \in Ax_0 + \cdots + Ax_{n-1}, k \ge 1$. As n! is invertible in A, by a standard argument we have $x_n \equiv y^{n!} \mod (Ax_0 + \cdots + Ax_{n-1})$, where

$$y = \sum_{i=0}^{k-1} \binom{1/n!}{i} (x_n - 1)^i.$$

It follows that $(x_0, \ldots, x_{n-1}) \sim_E (x_0, \ldots, x_{n-1}, y^{n!}) \sim (1, 0, \ldots, 0)$. \Box

(2) Let $(x_0, \ldots, x_n) \sim U_{n+1}(A)$, $x_n = 1+a$, $a \in \sqrt{Ax_0 + \cdots + Ax_{n-1}}$. Then the row $u(X) = (x_0, \ldots, x_{n-1}, 1+aX)$ is unimodular over A[X]. It follows from our assumption that $u(X) \sim u(0) = (1, 0, \ldots, 0)$. Therefore, we have, over $A, (x_0, \ldots, x_n) = u(1) \sim (1, 0, \ldots, 0)$. \Box

Proposition 6(2) may be applied to regular affine algebras (by Lindel's theorem, etc.). By the argument in the proof of Proposition 6(2) we see that an example of a noncompletable unimodular row (x_0, \ldots, x_n) over a ring A, with x_n unipotent mod $(Ax_0 + \cdots + Ax_{n-1})$, would also provide an example of a stably free A[X]-module which is not extended from A (see [4, p. 114 and 2, Chapter V.3, p. 140].

The next proposition is a direct consequence of Lemma 1.

PROPOSITION 7. If u, v are in $U_n(A)$, n even and uv^t is an invertible element of A, them $u \sim_E v$.

As shown by L. N. Vaserstein, Proposition 7 does not hold for odd $n \ge 3$ (take $A = \mathbb{R}[x_1, \ldots, x_n]/(x_1^2 + \cdots + x_n^2 - 1); u = (\overline{x}_1, \ldots, \overline{x}_n), v = -u$). Anyway for any $n \ge 1$ and u, v in $U_n(A)$ such that $uv^t = c$ is invertible in A, we have $u \leftrightarrow v$. (If u is the first row of $\alpha \in \operatorname{GL}_n(A)$, then $v\alpha^t = (c, \ldots) \sim (1, 0, \ldots, 0)$, so $v \sim (1, 0, \ldots, 0)$.) We generalize Lemma 1 and its proof.

THEOREM 8 (CF. [3, LEMMA 2.2 OR 1, CHAPTER V, LEMMA 2.3]). Let $(x_0, \ldots, x_n) \in U_n(A)$, $n \ge 2$ and let $0 \le k \le n-1$, $y_i \in A$ $(k \le i \le n)$. Let I be the ideal in A generated by the 2×2 minors of the matrix

$$lpha = \left(egin{array}{c} x_k \cdots x_n \ y_k \cdots y_n \end{array}
ight).$$

Assume $Ax_0 + \cdots + Ax_{k-1} + I = A$. Then

$$(x_0,\ldots,x_{k-1},x_k,\ldots,x_n)\sim_E (x_0,\ldots,x_{k-1},y_k,\ldots,y_n).$$

PROOF. Let $d \in I$, $a_i \in A$ $(0 \le i \le k-1)$ such that $1 = d + \sum_{i=0}^{k-1} a_i x_i$. There exists an $(n-k+1) \times 2$ matrix β such that $\alpha\beta = dI_2$ (see [1, Chapter V, Lemma 2.2]; our formulation is obtained by transposing). Let

$$\alpha' = \begin{pmatrix} a_k \\ \vdots \\ a_n \end{pmatrix}$$

be the sum of the two columns of β . Then $\alpha \alpha' = \binom{d}{d}$, so $\sum_{i=k}^{n} x_i a_i = \sum_{i=k}^{n} y_i a_i = d$. Let $u = (a_0, \ldots, a_k, a_{k+1}, \ldots, a_n)$. Then

$$(x_0, \ldots, x_{k-1}, x_k, \ldots, x_n)u^t = (x_0, \ldots, x_{k-1}, y_k, \ldots, y_n)u^t = 1,$$

so $(x_0,\ldots,x_n)\sim_E (x_0,\ldots,x_{k-1},y_k,\ldots,y_n)$ by [3, Corollary 2.8]. \Box

In the formulation of Theorem 8, let $\overline{A} = A/(Ax_0 + \cdots + Ax_{k-1})$. The condition $Ax_0 + \cdots + Ax_{k-1} + I = A$ (the unimodularity of the matrix $\overline{\alpha}$ over \overline{A}) is equivalent to each of the following two conditions:

(i) The matrix $\overline{\alpha}$ over \overline{A} has a right inverse.

(ii) $((\overline{x}_k, \ldots, \overline{x}_n), (\overline{y}_k, \ldots, \overline{y}_n))$ is a free basis of a direct summand of the \overline{A} -module \overline{A}^{n-k+1} . For k = -1, Theorem 8 generalizes [3, Corollary 2.9].

REMARK. The main result of [5] (which generalizes Proposition 3 above) may be easily obtained using the results above.

THEOREM (L. N. VASERSTEIN). Let $u = (x_0, \ldots, x_n), v = (y_0, \ldots, y_n)$ be in $U_{n+1}(R), n \ge 2, u \sim_E v$. Then for any $m \ge 1$ we have $(x_0^m, x_1, \ldots, x_n) \sim_E (y_0^m, y_1, \ldots, y_n)$. If

$$x'_0x_0 \equiv 1 \pmod{Rx_1 + \cdots + Rx_n}, \qquad y'_0y_0 \equiv 1 \pmod{Ry_1 + \cdots + Ry_n},$$

then $(x'_0, x_1, \ldots, x_n) \sim_E (y'_0, y_1, \ldots, y_n)$.

PROOF. As Proposition 3 above allows moving exponents from one entry to another, to prove $(x_0^m, \ldots, x_n) \sim_E (y_0^m, \ldots, y_n)$, it is enough to show $(x_0^m, \ldots, x_n) \sim_E (y_0^m, \ldots, y_n)$, where $y_1 = x_1 + rx_2$ for some $r \in R$, $y_i = x_i$ for $0 \le i \le n, i \ne 1$ and this is obvious.

Similarly, to obtain $(x'_0, \ldots, x_n) \sim_E (y'_0, \ldots, y_n)$, it is enough to show that if $x'_i x_i \equiv 1 \pmod{\sum_{k \neq i} Rx_k}, x'_j x_j \equiv 1 \pmod{\sum_{k \neq j} Rx_k}$, then $(x_0, \ldots, x'_i, \ldots, x_n) \sim_E (x_0, \ldots, x'_j, \ldots, x_n)$. We may assume i = 0, j = 1 and by correcting x'_1 if necessary we may assume also $\sum_{k=0}^n x_k x'_k = 1$, for some x'_k $(2 \le k \le n)$ in R.

By Lemma 1 above we have $(x'_0, x_1, \ldots, x_n) \sim_E (x_0, x'_1, \ldots, x_n)$ because $x'_0 x_0 + x_1 x'_1 \equiv 1 \pmod{Rx_2 + \cdots + Rx_n}$. \Box

ACKNOWLEDGMENT. I thank Professor L. N. Vaserstein for his remarks.

MOSHE ROITMAN

References

- 1. S. K. Gupta and M. P. Murthy, Suslin's work on linear groups over polynomial rings and Serre problem, ISI Lecture Notes, No. 8, Macmillan of India Ltd., 1980.
- 2. T. Y. Lam, Serre's conjecture, Lecture Notes in Math., vol. 635, Springer-Verlag, Berlin and New York, 1978.
- A. A. Suslin, On stably free modules, Mat. Sb. (N.S.) 102 (1977), 537–550 (=Math. USSR Sb. 31 (1977), 479–491).
- 4. R. G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120.
- 5. L. N. Vaserstein, Operations on orbits of unimodular vectors, J. Algebra (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAIFA, MT. CARMEL, HAIFA 31999, ISRAEL

Current address: Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6