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ON UNIMODULAR ROWS

MOSHE ROITMAN

ABSTRACT.   We prove here, among other results, that if (xo,... ,xn) is a

unimodular row over a commutative ring A, n > 2, i G A and

x = xn    mod J(Axo + ■ ■ ■ + Axn-2),

then (xo, ■ ■ ■ ,xn-i,xn) ~e (xo, ■ ■ ■ ,xn-i,x).

This note is based on Suslin's work on projective modules (see [1 and 3]). Among

other results, we simplify the proof of Suslin's theorem concerning the completabil-

ity of the unimodular row (xq°, ... ,x£"), when ^!|n"=or¿- More precisely, we

simplify the reduction to the case (xo, xi, x2,..., x").

All the rings here are commutative with unit. We denote by Un(A) the set of

unimodular rows of length n over the ring A. If u, v are elements in Un(A), we

denote u ~ v if there exists a matrix a in GLn(A) such that ua = v. We have

u ~ (1,0,... ,0) if and only if u is completable to a matrix in GLn(A). Similarly,

we denote u ~e v if there exists a matrix a in En(A) such that ua = v.

If I is an ideal in a ring A, we denote by J(I) the intersection of all the maximal

ideals in A containing /.

LEMMA 1. Let A be a ring, (xq,. .. ,xn) G Un+i(A), n > 2, and let yn-i,

yn be elements of A such that xn_i?/n_i + xnyn is invertible modulo the ideal

Ax0 +-\-Axn-2. Then (x0,... ,xn-2,xn-i,xn) ~£ (x0,... ,xn-2,yn-i,yn).

PROOF. Let zi,... ,zn-2,t be elements of A such that

n-2 \

^2 xizi I  + Kxn-iyn-l + XnVn) = L
¿=0 /

Let z„_i = i(y„_i + x„), zn = t(yn - x„_i) and u = (z0,.. .,zn). We have

(x0,...,x„_2,a;r1-i,x„)ut = (xo,...,xn-2,yn,-yn-i)vt = 1.

By [3, Corollary 2.8] we obtain

(X0, . . . , X„_2, X„-l, X„) ~£ (x0, . - . , Xn_2, yn, -J/n-l)

~E (xo,---,Xn-2,yn-i,yn)-   □

THEOREM 2.   Lei (x0,...,xn) e Un+i(A), n>2, let

Ij = J(Ax0 +-(- Axj_i + Axj+i +-\- Axn-i)
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for 0 < j < n — 1, and let x G A, such that x = xn mod (Iq + • • • + In-\)-   Then

(x0,... ,Xn_i,X„) ~£ (x0,... ,x„_i,x).

PROOF. Let x = x„ + t0 + • • • + i„_i, where i, e iy (0 < j' < n - 1). It is

enough to prove, for 0 < j < n — 1, that

(Xo,-. • ,Xn_i,Xn + ífj +-1" tj-i) ~e (xq,. . . ,Xn-i,Xn + ÍO +-1" tj),

so we may assume x = x„mod J(Axq + • • • + Axn-2). Let yn-i,yn be such that

x„_i2/„_i + xnyn = 1 mod (Ax0 +-r Axn-2). Then

Xn-iVn-i + Z2M = xn_i2/„_i + x„i/„    mod J(Ax0 +-h Axn-2),

so x„_iy„_i + xy„ is invertible mod (Axn + ■ • • + Axn-2). By Lemma 1 we have

(x0,...,x„_i,x„) ~e (xo,...,xn-2,yn-i,yn) ~E (xq, ■■■ ,x„_2,x„_i, x).    n

We do not know if the assumption of Theorem 2 may be replaced by the as-

sumption x = xnmod J(Axq + ■ • ■ + Axn_i) or even by the assumption x = xn

mod \JAxq + • ■ • + Axn-i (see Propositions 5 and 6 below).

As pointed out by L. N. Vaserstein, Proposition 3 (and also the simplification in

the proof of Suslin's theorem below) was already obtained in other ways in [5] and

also by R. A. Rao-M. P. Murthy.

PROPOSITION 3 (CF. [3, §2 OR 1, CHAPTER V]). Let (xQ,.. ., X„) e

Un+i(A), n > 2, and let ro,..., rn,r'0,..., r'n be natural numbers such that YYi=0 ri

= Il?=oi1 =r-  Then (xo°>•••.<") ~£ (xo°,...,x„n) ~e (xr0,xi,...,xn).

PROOF. By Theorem 2, we have, for any s > 0, that

(xo,xi,...,x„) ~s (xq,xi - x0,...,x„),    asxi=xi-x0    mod yjAxsQ.

Furthermore, (xsQ,xi-xQ,...,xn) ~e (x\ ,xi-x0, ... ,x„) ~E (xf, -x0,... ,xn) ~£

(xo,xf,..., xn) so the proposition follows.    D

THEOREM 4 (SUSLIN [5, THEOREM 2]). Let (x0,... ,xn) G Un+i(A), n > 2,

and let rn,..., rn be natural numbers such that n\\ n™=o ri- Then, (xq°, • ■ •, xjj")
~(1,0,...,0).

PROOF. Let n™=or» = n!á- Trien! by Proposition 3 and [3, Proposition 1.6],

we have (x£°,..., xrn«) ~B (xd0, xf, (xd2)2,..., (xdn)n) ~ (1,0,..., 0).    D

If u, v are in Un(A) we denote u *-> v for the property u ~ (1,0,..., 0) if and

only if v~ (1,0,...,0).

PROPOSITION 5. For any ring A and n > 2, the following conditions are equiv-

alent:

(1) For any (xq, ..., xn) in Un+\(A) and x G A such that

_
x = xn    mod \/Axn + • • • + Axn-i,

we have (x0,..., xra_i, xn) <-> (x0,..., xn_i, x).

(2) If xo, • ■. x„ are elements of A such that xn is unipotent

mod (Ar0 +-h Axn-i),

then (xo, ■ • •, xn) ~ (1,0,..., 0).
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PROOF. (1)=K2). We have

xn = 1 mod \JAxq + • • • + Axn-i,

so (io,...,i„_i,x„) <-»■ (x0,...,x„_i,l). As (xo,...,xn-i,l) ~£ (1,0,...,0) we

obtain (x0,..., xn) ~ (1,0,..., 0).

(2)=>(1). Assume (xo,...,x) ~ (1,0,...,0). Let y G A such that xy = 1

mod (Axo + ••■ + Axn-i).  Then (x0, -.. ,xn_i,xn) ~E (xQ,.. .,xn_i,xn(xy)) =

(x0,...,xn_i,x(xny)).    But xny = xy =  lmodv/Ax0+-\-Axn-i, so xny

is unipotent mod(Axo + ■•• + Axn-i).   By assumption, for any generators zq,

.. -,Zn-i of the ideal Axo+-\-Axn-i, we have (zq, ... ,zn-i,xny) ~ (1,0,... ,0),

so (x0,..., xn-i, x(xny)) ~ (1,0,..., 0) by [3, Corollary 3.3]. Finally,

(a;o,...,a;n-i,a:„)~(l,0,...,0).       D

PROPOSITION 6. The two properties of Proposition 5 hold in each of the fol-

lowing cases:

(1) n! is invertible in A.

(2) Stably free A[X]-modules are extended from A.

(1) (See [3, Proposition 3.1 or 4, Theorem 1.6] and their proofs .) We prove

property 2 of Proposition 5. Let (xo, • • •, xn) G Un+i(A),

xn = l    mod y/Ax0 +-r Axn-i,

(xn — l)k G Axq + ■ • ■ + Axn-i, k > 1. As n! is invertible in A, by a standard

argument we have xn = yn' mod (Axo + • ■ ■ + Axn_i), where

»=EÍ1/f!V-o'.
i=o V       /

It follows that (x0, ...,xn_i) ~E (x0,... ,xra_i, yn!) ~ (1,0, ...,0).    D

(2) Let (x0,..., xn) ~ /7n+i(A), xn = l+o, a e y^Axo +-h Axn_i. Then the

row u(X) = (xo, ■ • •, xn_i, 1 + aX) is unimodular over A[X]. It follows from our as-

sumption that u(X) ~ u(0) = (1,0,..., 0). Therefore, we have, over A, (xo, • • •, xn)

= «(-l)~(l,0J,..,0).   ü

Proposition 6(2) may be applied to regular affine algebras (by Lindel's theorem,

etc.). By the argument in the proof of Proposition 6(2) we see that an example

of a noncompletable unimodular row (xo,..., xn) over a ring A, with xn unipotent

mod (Axo + • • • + Axn-i), would also provide an example of a stably free A[X]-

module which is not extended from A (see [4, p. 114 and 2, Chapter V.3, p. 140].

The next proposition is a direct consequence of Lemma 1.

PROPOSITION 7. If u, v are in Un(A), n even anduv1 is an invertible element

of A, them u ~e v-

As shown by L. N. Vaserstein, Proposition 7 does not hold for odd n > 3 (take

A = R[xi,.. .,xn]l(x\ H-1- x2n - 1); u = (xi,... ,xn), v = -u). Anyway for any

n > 1 and u, v in Un(A) such that uvl — eis invertible in A, we have u <-► v. (If u is

the first row of a G GLn(A), then va* - (c,...) ~ (1,0,.. .,0), so v ~ (1,0,.. .,0).)

We generalize Lemma 1 and its proof.
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Theorem 8 (cf. [3, Lemma 2.2 or l, Chapter V, Lemma 2.3]).
Let (xoi • ■ • ) xn) G Un(Ä), n > 2 and let 0 < k < n — 1, yi G A (k < i < n). Let I

be the ideal in A generated by the 2 x 2 minors of the matrix

a=(xk-xn\

\ Vk•■■Vh J

Assume Axo + • • • + Axk-i + I — A. Then

(xo,... ,Xfc_i,Xfc,.. . ,x„) ~e (xo,-- -,Xfc_i,2/fe,.. .,yn).

PROOF. Let d G I, ai G A (0 < i < k - 1) such that 1 = d + J2i=o aix%- There
exists an (n — k + 1) x 2 matrix ß such that aß = dl2 (see [1, Chapter V, Lemma

2.2]; our formulation is obtained by transposing). Let

(ak\

be the sum of the two columns of ß. Then aa' = (d), so Y^i=k Xiai = £!?=*; 2/*°« =

d. Let u = (a0,... ,Ofc,afe+i,... ,an). Then

(x0, . . . , Xfc_i, Xfc, . . . , X„K = (X0, . . . , Xfc-1, Vk, ■ ■ ■ , 2/nK = 1,

so (x0,..., xn) ~e (xo, ■■■, Xk-i,yk, ■ ■ -jf/n) by [3, Corollary 2.8].    D

In the formulation of Theorem 8, let A = A/(Axq +-V Axk-i). The condition

Axo +-h Axk-i +1 = A (the unimodularity of the matrix ä over A) is equivalent

to each of the following two conditions:

(i) The matrix ä over A has a right inverse.

(ii) ((xfc,... ,xn), (yk,... ,yn)) is a free basis of a direct summand of the A-

module A . For k — -1, Theorem 8 generalizes [3, Corollary 2.9].

REMARK. The main result of [5] (which generalizes Proposition 3 above) may

be easily obtained using the results above.

Theorem (L. N. Vaserstein). Let u = (x0,...,xn),i> = (yo,---,yn) be

in Un+i(R),n > 2,u ~# v.   Then for any m > 1 we have (x™,xi,.. .,xn) ~e

(y™,yi,---,yn)- If

x0x0 = 1    ( mod Rxi +-1- Rxn),        y'0y0 = 1    (mod Ryi +-\- Ryn),

then (x0,xi,...,x„) ~ß (y'0, j/i,..., yn).

PROOF. As Proposition 3 above allows moving exponents from one entry to an-

other, to prove (xq1, ...,xn)~E (y™, ■ • •, yn), it is enough to show (x™, ...,xn)~E

(yó",..., yn), where yi = xi + rx2 for some r e R, yi = x¿ for 0 < i < n, i'■ ̂ 1 and

this is obvious.

Similarly, to obtain (x0,..., xn) ~e (y'0,..., yn), it is enough to show that if

x-xt = 1 (mod Y.k^i Rxk), x'jXj = 1 (mod £)fe?¿J Rxk), then (x0,..., x■,..., x„) ~£

(xo,..., x',..., x„). We may assume i = 0,j = 1 and by correcting x\ if necessary

we may assume also J2k=o xkx'k = h f°r some x'k (2 < k < n) in R.

By Lemma 1 above we have (x'0,xi,...,xn) ~# (xo,x\,...,xn) because x'0xq +

xiXi = 1 (modfix2 + • ■ • + Rxn).    G
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