ON UNIMODULAR ROWS

MOSHE ROITMAN

$$
\begin{aligned}
& \text { ABSTRACT. We prove here, among other results, that if }\left(x_{0}, \ldots, x_{n}\right) \text { is a } \\
& \text { unimodular row over a commutative ring } A, n \geq 2, x \in A \text { and } \\
& \qquad x \equiv x_{n} \bmod J\left(A x_{0}+\cdots+A x_{n-2}\right) \\
& \text { then }\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-1}, x\right)
\end{aligned}
$$

This note is based on Suslin's work on projective modules (see [$\mathbf{1}$ and $\mathbf{3}]$). Among other results, we simplify the proof of Suslin's theorem concerning the completability of the unimodular row $\left(x_{0}^{r_{0}}, \ldots, x_{n}^{r_{n}}\right)$, when $n!\mid \prod_{i=0}^{n} r_{i}$. More precisely, we simplify the reduction to the case ($x_{0}, x_{1}, x_{2}^{2}, \ldots, x_{n}^{n}$).

All the rings here are commutative with unit. We denote by $U_{n}(A)$ the set of unimodular rows of length n over the ring A. If u, v are elements in $U_{n}(A)$, we denote $u \sim v$ if there exists a matrix α in $\operatorname{GL}_{n}(A)$ such that $u \alpha==v$. We have $u \sim(1,0, \ldots, 0)$ if and only if u is completable to a matrix in $\mathrm{GL}_{n}(A)$. Similarly, we denote $u \sim_{E} v$ if there exists a matrix α in $E_{n}(A)$ such that $u \alpha=v$.

If I is an ideal in a ring A, we denote by $J(I)$ the intersection of all the maximal ideals in A containing I.

Lemma 1. Let A be a ring, $\left(x_{0}, \ldots, x_{n}\right) \in U_{n+1}(A), n \geq 2$, and let y_{n-1}, y_{n} be elements of A such that $x_{n-1} y_{n-1}+x_{n} y_{n}$ is invertible modulo the ideal $A x_{0}+\cdots+A x_{n-2}$. Then $\left(x_{0}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-2}, y_{n-1}, y_{n}\right)$.

Proof. Let $z_{1}, \ldots, z_{n-2}, t$ be elements of A such that

$$
\left(\sum_{i=0}^{n-2} x_{i} z_{i}\right)+t\left(x_{n-1} y_{n-1}+x_{n} y_{n}\right)=1
$$

Let $z_{n-1}=t\left(y_{n-1}+x_{n}\right), z_{n}=t\left(y_{n}-x_{n-1}\right)$ and $u=\left(z_{0}, \ldots, z_{n}\right)$. We have

$$
\left(x_{0}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right) u^{t}=\left(x_{0}, \ldots, x_{n-2}, y_{n},-y_{n-1}\right) u^{t}=1
$$

By [3, Corollary 2.8] we obtain

$$
\begin{aligned}
\left(x_{0}, \ldots, x_{n-2}, x_{n-1}, x_{n}\right) & \sim_{E}\left(x_{0}, \ldots, x_{n-2}, y_{n},-y_{n-1}\right) \\
& \sim_{E}\left(x_{0}, \ldots, x_{n-2}, y_{n-1}, y_{n}\right) .
\end{aligned}
$$

THEOREM 2. Let $\left(x_{0}, \ldots, x_{n}\right) \in U_{n+1}(A), n \geq 2$, let

$$
I_{j}=J\left(A x_{0}+\cdots+A x_{j-1}+A x_{j+1}+\cdots+A x_{n-1}\right)
$$

for $0 \leq j \leq n-1$, and let $x \in A$, such that $x \equiv x_{n} \bmod \left(I_{0}+\cdots+I_{n-1}\right)$. Then $\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-1}, x\right)$.

Proof. Let $x=x_{n}+t_{0}+\cdots+t_{n-1}$, where $t_{j} \in I_{j}(0 \leq j \leq n-1)$. It is enough to prove, for $0 \leq j \leq n-1$, that

$$
\left(x_{0}, \ldots, x_{n-1}, x_{n}+t_{0}+\cdots+t_{j-1}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-1}, x_{n}+t_{0}+\cdots+t_{j}\right)
$$

so we may assume $x \equiv x_{n} \bmod J\left(A x_{0}+\cdots+A x_{n-2}\right)$. Let y_{n-1}, y_{n} be such that $x_{n-1} y_{n-1}+x_{n} y_{n} \equiv 1 \bmod \left(A x_{0}+\cdots+A x_{n-2}\right)$. Then

$$
x_{n-1} y_{n-1}+x y_{n} \equiv x_{n-1} y_{n-1}+x_{n} y_{n} \quad \bmod J\left(A x_{0}+\cdots+A x_{n-2}\right)
$$

so $x_{n-1} y_{n-1}+x y_{n}$ is invertible $\bmod \left(A x_{0}+\cdots+A x_{n-2}\right)$. By Lemma 1 we have

$$
\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-2}, y_{n-1}, y_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-2}, x_{n-1}, x\right)
$$

We do not know if the assumption of Theorem 2 may be replaced by the assumption $x \equiv x_{n} \bmod J\left(A x_{0}+\cdots+A x_{n-1}\right)$ or even by the assumption $x \equiv x_{n}$ $\bmod \sqrt{A x_{0}+\cdots+A x_{n-1}}$ (see Propositions 5 and 6 below).

As pointed out by L. N. Vaserstein, Proposition 3 (and also the simplification in the proof of Suslin's theorem below) was already obtained in other ways in [5] and also by R. A. Rao-M. P. Murthy.

Proposition 3 (CF. [3, §2 OR 1, Chapter V]). Let $\left(x_{0}, \ldots, x_{n}\right) \in$ $U_{n+1}(A), n \geq 2$, and let $r_{0}, \ldots, r_{n}, r_{0}^{\prime}, \ldots, r_{n}^{\prime}$ be natural numbers such that $\prod_{i=0}^{n} r_{i}$ $=\prod_{i=0}^{n} r_{i}^{\prime}=r$. Then $\left(x_{0}^{r_{0}}, \ldots, x_{n}^{r_{n}}\right) \sim_{E}\left(x_{0}^{r_{0}^{\prime}}, \ldots, x_{n}^{r_{n}^{\prime}}\right) \sim_{E}\left(x_{0}^{r}, x_{1}, \ldots, x_{n}\right)$.

Proof. By Theorem 2, we have, for any $s \geq 0$, that

$$
\left(x_{0}^{s}, x_{1}, \ldots, x_{n}\right) \sim_{E}\left(x_{0}^{s}, x_{1}-x_{0}, \ldots, x_{n}\right), \quad \text { as } x_{1} \equiv x_{1}-x_{0} \quad \bmod \sqrt{A x_{0}^{s}} .
$$

Furthermore, $\left(x_{0}^{s}, x_{1}-x_{0}, \ldots, x_{n}\right) \sim_{E}\left(x_{1}^{s}, x_{1}-x_{0}, \ldots, x_{n}\right) \sim_{E}\left(x_{1}^{s},-x_{0}, \ldots, x_{n}\right) \sim_{E}$ $\left(x_{0}, x_{1}^{s}, \ldots, x_{n}\right)$ so the proposition follows.

Theorem 4 (SUSLIN [5, Theorem 2]). Let $\left(x_{0}, \ldots, x_{n}\right) \in U_{n+1}(A), n \geq 2$, and let r_{0}, \ldots, r_{n} be natural numbers such that $n!\mid \prod_{i=0}^{n} r_{i}$. Then, $\left(x_{0}^{r_{0}}, \ldots, x_{n}^{r_{n}}\right)$ $\sim(1,0, \ldots, 0)$.

Proof. Let $\prod_{i=0}^{n} r_{i}=n!d$. Then, by Proposition 3 and [3, Proposition 1.6], we have $\left(x_{0}^{r_{0}}, \ldots, x_{n}^{r_{n}}\right) \sim_{E}\left(x_{0}^{d}, x_{1}^{d},\left(x_{2}^{d}\right)^{2}, \ldots,\left(x_{n}^{d}\right)^{n}\right) \sim(1,0, \ldots, 0)$.

If u, v are in $U_{n}(A)$ we denote $u \leftrightarrow v$ for the property $u \sim(1,0, \ldots, 0)$ if and only if $v \sim(1,0, \ldots, 0)$.

Proposition 5. For any ring A and $n \geq 2$, the following conditions are equivalent:
(1) For any $\left(x_{0}, \ldots, x_{n}\right)$ in $U_{n+1}(A)$ and $x \in A$ such that

$$
x \equiv x_{n} \quad \bmod \sqrt{A x_{0}+\cdots+A x_{n-1}}
$$

we have $\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \leftrightarrow\left(x_{0}, \ldots, x_{n-1}, x\right)$.
(2) If $x_{0}, \ldots x_{n}$ are elements of A such that x_{n} is unipotent

$$
\bmod \left(A x_{0}+\cdots+A x_{n-1}\right)
$$

then $\left(x_{0}, \ldots, x_{n}\right) \sim(1,0, \ldots, 0)$.

Proof. (1) \Rightarrow (2). We have

$$
x_{n} \equiv 1 \bmod \sqrt{A x_{0}+\cdots+A x_{n-1}},
$$

so $\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \leftrightarrow\left(x_{0}, \ldots, x_{n-1}, 1\right)$. As $\left(x_{0}, \ldots, x_{n-1}, 1\right) \sim_{E}(1,0, \ldots, 0)$ we obtain $\left(x_{0}, \ldots, x_{n}\right) \sim(1,0, \ldots, 0)$.
$(2) \Rightarrow(1)$. Assume $\left(x_{0}, \ldots, x\right) \sim(1,0, \ldots, 0)$. Let $y \in A$ such that $x y \equiv 1$ $\bmod \left(A x_{0}+\cdots+A x_{n-1}\right)$. Then $\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-1}, x_{n}(x y)\right)=$ $\left(x_{0}, \ldots, x_{n-1}, x\left(x_{n} y\right)\right)$. But $x_{n} y \equiv x y \equiv 1 \bmod \sqrt{A x_{0}+\cdots+A x_{n-1}}$, so $x_{n} y$ is unipotent $\bmod \left(A x_{0}+\cdots+A x_{n-1}\right)$. By assumption, for any generators z_{0}, \ldots, z_{n-1} of the ideal $A x_{0}+\cdots+A x_{n-1}$, we have $\left(z_{0}, \ldots, z_{n-1}, x_{n} y\right) \sim(1,0, \ldots, 0)$, so $\left(x_{0}, \ldots, x_{n-1}, x\left(x_{n} y\right)\right) \sim(1,0, \ldots, 0)$ by [3, Corollary 3.3]. Finally,

$$
\left(x_{0}, \ldots, x_{n-1}, x_{n}\right) \sim(1,0, \ldots, 0)
$$

Proposition 6. The two properties of Proposition 5 hold in each of the following cases:
(1) n ! is invertible in A.
(2) Stably free $A[X]$-modules are extended from A.
(1) (See [3, Proposition 3.1 or 4, Theorem 1.6] and their proofs .) We prove property 2 of Proposition 5. Let $\left(x_{0}, \ldots, x_{n}\right) \in U_{n+1}(A)$,

$$
x_{n} \equiv 1 \bmod \sqrt{A x_{0}+\cdots+A x_{n-1}}
$$

$\left(x_{n}-1\right)^{k} \in A x_{0}+\cdots+A x_{n-1}, k \geq 1$. As $n!$ is invertible in A, by a standard argument we have $x_{n} \equiv y^{n!} \bmod \left(A x_{0}+\cdots+A x_{n-1}\right)$, where

$$
y=\sum_{i=0}^{k-1}\binom{1 / n!}{i}\left(x_{n}-1\right)^{i}
$$

It follows that $\left(x_{0}, \ldots, x_{n-1}\right) \sim_{E}\left(x_{0}, \ldots, x_{n-1}, y^{n!}\right) \sim(1,0, \ldots, 0)$.
(2) Let $\left(x_{0}, \ldots, x_{n}\right) \sim U_{n+1}(A), x_{n}=1+a, a \in \sqrt{A x_{0}+\cdots+A x_{n-1}}$. Then the row $u(X)=\left(x_{0}, \ldots, x_{n-1}, 1+a X\right)$ is unimodular over $A[X]$. It follows from our assumption that $u(X) \sim u(0)=(1,0, \ldots, 0)$. Therefore, we have, over $A,\left(x_{0}, \ldots, x_{n}\right)$ $=u(1) \sim(1,0, \ldots, 0)$.

Proposition 6(2) may be applied to regular affine algebras (by Lindel's theorem, etc.). By the argument in the proof of Proposition 6(2) we see that an example of a noncompletable unimodular row $\left(x_{0}, \ldots, x_{n}\right)$ over a ring A, with x_{n} unipotent $\bmod \left(A x_{0}+\cdots+A x_{n-1}\right)$, would also provide an example of a stably free $A[X]-$ module which is not extended from A (see [4, p. 114 and 2, Chapter V.3, p. 140].

The next proposition is a direct consequence of Lemma 1.
Proposition 7. If u, v are in $U_{n}(A), n$ even and $u v^{t}$ is an invertible element of A, them $u \sim_{E} v$.

As shown by L. N. Vaserstein, Proposition 7 does not hold for odd $n \geq 3$ (take $\left.A=\mathbf{R}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}+\cdots+x_{n}^{2}-1\right) ; u=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right), v=-u\right)$. Anyway for any $n \geq 1$ and u, v in $U_{n}(A)$ such that $u v^{t}=c$ is invertible in A, we have $u \leftrightarrow v$. (If u is the first row of $\alpha \in \mathrm{GL}_{n}(A)$, then $v \alpha^{t}=(c, \ldots) \sim(1,0, \ldots, 0)$, so $v \sim(1,0, \ldots, 0)$.) We generalize Lemma 1 and its proof.

Theorem 8 (CF. [3, Lemma 2.2 or 1, Chapter V, Lemma 2.3]). Let $\left(x_{0}, \ldots, x_{n}\right) \in U_{n}(A), n \geq 2$ and let $0 \leq k \leq n-1, y_{i} \in A(k \leq i \leq n)$. Let I be the ideal in A generated by the 2×2 minors of the matrix

$$
\alpha=\binom{x_{k} \cdots x_{n}}{y_{k} \cdots y_{n}}
$$

Assume $A x_{0}+\cdots+A x_{k-1}+I=A$. Then

$$
\left(x_{0}, \ldots, x_{k-1}, x_{k}, \ldots, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{k-1}, y_{k}, \ldots, y_{n}\right)
$$

Proof. Let $d \in I, a_{i} \in A(0 \leq i \leq k-1)$ such that $1=d+\sum_{i=0}^{k-1} a_{i} x_{i}$. There exists an $(n-k+1) \times 2$ matrix β such that $\alpha \beta=d I_{2}$ (see [1, Chapter V, Lemma 2.2]; our formulation is obtained by transposing). Let

$$
\alpha^{\prime}=\left(\begin{array}{c}
a_{k} \\
\vdots \\
a_{n}
\end{array}\right)
$$

be the sum of the two columns of β. Then $\alpha \alpha^{\prime}=\binom{d}{d}$, so $\sum_{i=k}^{n} x_{i} a_{i}=\sum_{i=k}^{n} y_{i} a_{i}=$ d. Let $u=\left(a_{0}, \ldots, a_{k}, a_{k+1}, \ldots, a_{n}\right)$. Then

$$
\left(x_{0}, \ldots, x_{k-1}, x_{k}, \ldots, x_{n}\right) u^{t}=\left(x_{0}, \ldots, x_{k-1}, y_{k}, \ldots, y_{n}\right) u^{t}=1
$$

so $\left(x_{0}, \ldots, x_{n}\right) \sim_{E}\left(x_{0}, \ldots, x_{k-1}, y_{k}, \ldots, y_{n}\right)$ by [3, Corollary 2.8].
In the formulation of Theorem 8 , let $\bar{A}=A /\left(A x_{0}+\cdots+A x_{k-1}\right)$. The condition $A x_{0}+\cdots+A x_{k-1}+I=A$ (the unimodularity of the matrix $\bar{\alpha}$ over \bar{A}) is equivalent to each of the following two conditions:
(i) The matrix $\bar{\alpha}$ over \bar{A} has a right inverse.
(ii) $\left(\left(\bar{x}_{k}, \ldots, \bar{x}_{n}\right),\left(\bar{y}_{k}, \ldots, \bar{y}_{n}\right)\right)$ is a free basis of a direct summand of the \bar{A} module \bar{A}^{n-k+1}. For $k=-1$, Theorem 8 generalizes [3, Corollary 2.9].

REmark. The main result of [5] (which generalizes Proposition 3 above) may be easily obtained using the results above.

Theorem (L. N. VASERSTEIN). Let $u=\left(x_{0}, \ldots, x_{n}\right), v=\left(y_{0}, \ldots, y_{n}\right)$ be in $U_{n+1}(R), n \geq 2, u \sim_{E} v$. Then for any $m \geq 1$ we have $\left(x_{0}^{m}, x_{1}, \ldots, x_{n}\right) \sim_{E}$ $\left(y_{0}^{m}, y_{1}, \ldots, y_{n}\right)$. If

$$
x_{0}^{\prime} x_{0} \equiv 1 \quad\left(\bmod R x_{1}+\cdots+R x_{n}\right), \quad y_{0}^{\prime} y_{0} \equiv 1 \quad\left(\bmod R y_{1}+\cdots+R y_{n}\right)
$$ then $\left(x_{0}^{\prime}, x_{1}, \ldots, x_{n}\right) \sim_{E}\left(y_{0}^{\prime}, y_{1}, \ldots, y_{n}\right)$.

Proof. As Proposition 3 above allows moving exponents from one entry to another, to prove $\left(x_{0}^{m}, \ldots, x_{n}\right) \sim_{E}\left(y_{0}^{m}, \ldots, y_{n}\right)$, it is enough to show $\left(x_{0}^{m}, \ldots, x_{n}\right) \sim_{E}$ $\left(y_{0}^{m}, \ldots, y_{n}\right)$, where $y_{1}=x_{1}+r x_{2}$ for some $r \in R, y_{i}=x_{i}$ for $0 \leq i \leq n, i \neq 1$ and this is obvious.

Similarly, to obtain $\left(x_{0}^{\prime}, \ldots, x_{n}\right) \sim_{E}\left(y_{0}^{\prime}, \ldots, y_{n}\right)$, it is enough to show that if $x_{i}^{\prime} x_{i} \equiv 1\left(\bmod \sum_{k \neq i} R x_{k}\right), x_{j}^{\prime} x_{j} \equiv 1\left(\bmod \sum_{k \neq j} R x_{k}\right)$, then $\left(x_{0}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right) \sim_{E}$ $\left(x_{0}, \ldots, x_{j}^{\prime}, \ldots, x_{n}\right)$. We may assume $i=0, j=1$ and by correcting x_{1}^{\prime} if necessary we may assume also $\sum_{k=0}^{n} x_{k} x_{k}^{\prime}=1$, for some $x_{k}^{\prime}(2 \leq k \leq n)$ in R.

By Lemma 1 above we have $\left(x_{0}^{\prime}, x_{1}, \ldots, x_{n}\right) \sim_{E}\left(x_{0}, x_{1}^{\prime}, \ldots, x_{n}\right)$ because $x_{0}^{\prime} x_{0}+$ $x_{1} x_{1}^{\prime} \equiv 1\left(\bmod R x_{2}+\cdots+R x_{n}\right)$.

Acknowledgment. I thank Professor L. N. Vaserstein for his remarks.

References

1. S. K. Gupta and M. P. Murthy, Suslin's work on linear groups over polymomial rings and Serre problem, ISI Lecture Notes, No. 8, Macmillan of India Ltd., 1980.
2. T. Y. Lam, Serre's conjecture, Lecture Notes in Math., vol. 635, Springer-Verlag, Berlin and New York, 1978.
3. A. A. Suslin, On stably free modules, Mat. Sb. (N.S.) 102 (1977), 537-550 (=Math. USSR Sb. 31 (1977), 479-491).
4. R. G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120.
5. L. N. Vaserstein, Operations on orbits of unimodular vectors, J. Algebra (to appear).

Department of Mathematics, University of Haifa, Mt. Carmel, haifa 31999, ISRAEL

Current address: Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

