THE PROOF OF A CONJECTURE OF GRAHAM FOR SEQUENCES CONTAINING PRIMES¹

RIVKA KLEIN

ABSTRACT. Let $a_1 < a_2 < \cdots < a_n$ be a finite sequence of positive integers. R. L. Graham has conjectured that $\max_{i,j}\{a_i/(a_i,a_j)\} \ge n$. We verify this conjecture in case at least one of the α_i 's is prime.

R. L. Graham [2] has conjectured that if $a_1 < a_2 < \cdots < a_n$ is a sequence of positive integers, then $\max_{i,j}\{a_i/(a_i, a_j)\} \ge n$. The conjecture has been verified in some special cases. For references see [1]. We mention here (i) the case when a_1 is a prime [5] and (ii) the case when, for some k, a_k is a prime not being of the form $p = \frac{1}{2}(a_i + a_j)$ [4].

In this note we prove Graham's conjecture for sequences containing a prime. Thus we obtain the above result (ii) without any restriction on p.

THEOREM. Let $a_1 < a_2 < \cdots < a_n$ be a sequence of positive integers where $a_k = p$, a prime, for some k. Then $\max_{i,j} \{a_i/(a_i, a_j)\} \ge n$.

PROOF. Assume the contrary that $\max_{i,j}\{a_i/(a_i, a_j)\} < n$. Since we may suppose that g.c.d. $\{a_1, \ldots, a_n\} = 1$, some a_i is not a multiple of p, so $p = a_k = a_k/(a_k, a_i) < n$. Our sequence contains elements $\ge n$ so $a_1 > 1$. Moreover, each $a_j \ge n$ must be a multiple of p since otherwise $a_j/(a_j, a_k) = a_j \ge n$. In particular, if $a_n = tp$ then $t = a_n/(a_n, a_k) \le n - 1$. We claim that $t \le n - 2$. Indeed, by [4, 5], a_1 is not prime, so k > 1 and $a_1 < a_k = p$. It follows that $a_1 \ge 4$ and $p \ge 5$. Since $a_n/(a_n, a_1) \le n - 1$, we have $a_n \le (n - 1)a_1$, so $tp \le (n - 1)a_1 < (n - 1)p$ and this implies that $t \le n - 2$.

Consider the following two sets:

$$A = \{1, 2, \dots, n-1\}, \quad B = \{sp, (s+1)p, \dots, tp\}$$

where $s = \lfloor n/p \rfloor$. By the definitions of s, t and B each $a_j \ge n$ belongs to B, so $\{a_1, \ldots, a_n\} \subseteq A \cup B$.

The proof will be achieved by defining a 1-1 correspondence $F: B \to A$ such that if F(b) = a then at most one of a, b can be a member of $C = \{a_1, \ldots, a_n\}$. Hence C has at most n-1 elements, a contradiction.

Let $A' = \{c \in A | p \nmid c\}$. If $x \in B$ then $x = bp^r$ for some $b, p \nmid b$, and $b \leq n-2, r \geq 1$. Define $f: B \to A'$ by f(x) = b. The function f is 1-1 for if f(x') = f(x'') and $x' \neq x''$, say x'' > x', let $x' = b'p^{r'}$, $p \nmid b'$, $x'' = b''p^{r''}$, $p \nmid b''$. Then b' = f(x') = f(x'') = b'' and r'' > r' so $x'' = p^{r''-r'}x' \geq pn > pt$, which is impossible.

Received by the editors November 30, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10A05.

¹This is a part of the author's Ph.D. Thesis prepared at Tel-Aviv University under the supervision of Professor J. Schönheim.

^{©1985} American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

Now let B' = f(B). Then $B' \subset A'$. If $b \in B'$ then $p \nmid b$ so $b \equiv u \pmod{p}$ for some $u, 1 \leq u \leq p-1$. Define $g: B' \to A'$ as follows

$$g(b) = \begin{cases} b+1 & \text{if } u \text{ is odd,} \\ b-1 & \text{if } u \text{ is even.} \end{cases}$$

The values of g belong to A' since p-1 is even and $t \leq n-2$. The function g is clearly also 1-1.

The required correspondence F from B to A is defined by F(x) = g(f(x)) and it is clearly 1-1. We claim that F(x) and x are relatively prime. Indeed, $F(x) \in A'$ so $p \nmid F(x)$. In addition, $x = bp^r$ and $F(x) = b \pm 1$, so (b, F(x)) = 1, it follows that $(bp^r, F(x)) = 1$, thus (x, F(x)) = 1. This implies that x and F(x) cannot both belong to $\{a_1, \ldots, a_n\}$ because $x/(x, F(x)) = x \ge n$, and this proves the theorem.

References

- 1. R. D. Boyle, On a problem of R. L. Graham, Acta Arith. 34 (1978), 163-177.
- 2. R. L. Graham, Unsolved problem 5749, Amer. Math. Monthly 77 (1970), 775.
- 3. P. Erdös, Problems and results on combinatorial number theory, A Survey of Combinatorial Theory, North-Holland, Amsterdam, 1973, Chapter 12.
- 4. G. Weinstein, On a conjecture of Graham concerning greatest common divisors, Proc. Amer. Math. Soc. 63 (1977), 33-38.
- R. Winterle, A problem of R. L. Graham in combinatorial number theory, Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La., 1970, 357-361.

SCHOOL OF MATHEMATICAL SCIENCES, TEL-AVIV UNIVERSITY, TEL-AVIV 69978, ISRAEL