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CLASS NUMBER RELATION

BETWEEN CERTAIN SEXTIC NUMBER FIELDS

AKIRA ENDÔ

Abstract. The congruence relation modulo 7 between the class numbers of the real

and imaginary sextic subfields of the extension of a quadratic number field obtained

by adjoining a seventh root of unity is studied.

1. Introduction. The aim of this note is to study the congruence relation modulo 7

between the class numbers of the real and imaginary sextic subfields of the extension

of a quadratic number field obtained by adjoining a seventh root of unity.

Let m > 1 be a square free rational integer, if = e2^~x/1 a primitive seventh root

of unity and Q the field of rational numbers. Let

which is of degree 12 over Q and has the following subfields:

K0=Q(Ç),   ^ = ß(vW,f+ T1),    K2=Q(f^!m,Ç + r1),

F=ô(f + r1),       k = Q^,f^J),

k0=Q(f^),    ^ = Ô(vW),    k2 = Q{J^n~).

K0, Kx and K2 are cyclic sextic extensions of Q, and Kx is the maximal real subfield

of K. F is a cyclic cubic extension of Q and the maximal real subfield of K0 and also

of K2. Denote the class numbers of K and K¡ by h and h¡ (i = 1,2), respectively. In

this note, we obtain a congruence relation modulo 7 between hx and h2 by making

use of the continuity of p-adic L-functions.

2. Class number relations. For any subfield £2 of K, Uü and WQ denote the unit

group of ñ and its subgroup of all roots of unity in fi, respectively. Put QK =

(UK : UKWK) and Q2 = {UKi : UFWKf) (cf. [1]). That Q2 = 1 can be proved by the

argument similar to that in the proof of Theorem 1 in [4]. Hence one sees that

QK = (UK : UKUKUKi).

Let X denote the set of Dirichlet characters attached to K. Let $+ and X " be the

set of even and odd characters in 3£, respectively. Furthermore, Xo denotes the

principal character.
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Note that both of the class numbers of F and K0 are equal  to  1.   Since

2h = QKhxh2 [6, Theorem (6.3)], it follows that

f*2ri(i-x(7))-^   n   (i-2^1) <mod7^
WK       X^3£- {Dx    x^ + -{Xo)\ '      I

where wK is the number of roots of unity in K, Dx is the discriminant of Kx, and Rx

is the 7-adic regulator of Kx [2, Theorem 1]. Dx is given by

l4m3, 7 + m, m=l (mod4),

J74(4m)3, lim, m = 2,3 (mod 4),

72w3, 7|w, m = 1 (mod4),

72(4m)3, 7|m, m = 2,3(mod4).

Therefore, if 7 + m, then wK = 14 and

(1) l*'-5w4-'7(?)) <™d7);
and if 7|m and m = 7m', then

(2) _LÄ2(1+f^))s_^Äi   (mod7).
wÀ" '   //       Im-fm

In order to calculate /?,, we must determine a system of fundamental units of Kx.

For any x e F, x' means the image of x under an automorphism of F which maps f

to f2. Let i) = f + £~l; then tj and tj' constitute a system of fundamental units of

F. Let e = {{a + bjm) > 1 be the fundamental unit of kx. Furthermore, let £ =

{(a + pVm ), a, ß cz F, be a unit of #! such that | and g = \(a - ß']/m)

constitute a system of relative fundamental units of Kx, i.e., -1, £ and £' generate a

subgroup of all units in UK whose relative norms to F and to kx are 1 and ±1,

respectively (cf. [3]). Note that a is an integer of F and that ß or Iß is an integer of F

according as 7 + m or 7|m.

If the equation x2 = ±-qrr}'s^ for (r, s) = (1,0), (0,1) or (1,1) has a solution in AT,,

when the equation v2 = ±r¡~sri'r %' also has a solution in Kx, let tj0 = y ±TjrT)"l

and r/'o = V ±7í~J'n'r-í£' ', otherwise let tj0 = tj and tj'0 = tj'. And, if the equation
3,-

z3 = s*1^' has a solution in Kx, let £0 = ye*1^' ; otherwise let £0 = |. Then e, r/0,

t)'0, £0 and £' constitute a system of fundamental units of Kx [3]. Accordingly, if e is

the index of the subgroup generated by -1, e, tj, tj', £ and £' in ¿/^ , then e = 1,3,4

or 12. Hence, after easy calculation, one has

(3) Rx=^-logeR(r,)Rtt)

with

(4) R(v) = (log r,)2 + (log T,)(log V) + (log V)2

and

(5) *(é) = (log ¿)2 - (log «)(iog r)+(log r)2,

where log is the 7-adic logarithm.
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3. Calculating the 7-adic regulator. In this section, we calculate the 7-adic regulator

Rx of Kx. First, let m = I + f_1 - 2 and p = (77); then p is a unique prime ideal of F

lying above (7): p3 = (7). It is easy to verify that

(6) 772 + w' + tt'2 = ~l(ir + ir' + 2) = -14    (modp4),

(7) 277     +  77   It' +  7777' 3t73=-21    (modp4).

Since tj6 = 1 + 3t7 4- 2t72 (mod p3), log tj = ¿ log tj6 = Air - it2 (mod p3). Hence,

by making use of (6), (7), it follows from (4) that

R(tj)  =  2(772  +  7777'  +  77'2)  - 4(2t73  +  77277'  +  7777'2  +  2t7'3)  =   1       (mod p4).

As R{f]) is a rational 7-adic integer, this congruence holds modulo 72, that is,

(8) R(f\) = l    (mod72).

We next consider log e. Here and hereafter Ar./. means the norm with respect to the

assigned field extension. It is easy to see that the following congruences hold:

e2 = 1 + Aabjm    (mod 7) if 7|m,

s4 = 1 -[Nk¡/Qe)ab]/m    (mod72) if 71 a,

e2 = 1 + Aab{m     (mod72)

e6 = 1 -(a2 - l)abjm     (mod72)

if7|Z>,

if Nk /Qe = 1, a = ±1 (mod 7),

if Nk ,qt = 1, a a +3 (mod 7),

if Nkl/Qe

l,a= ±1 (mod7),

l,a= ±2 (mod7),

e8= 1 -{a2- 2)ab)/m    (mod72)

e16 = 1 - 4(a2 - %)abïfm     (mod72)

e6 = 1 -(a2 + l)ab{m    (mod72)

e16 = 1 - 4(a2 + 12)ab\fm     (mod72)     iíNk¡/Qe =  -l,a= +3 (mod7).

It then follows from these that

'¿log e2 = 2ab4m     (mod7) if7|m,

iloge4 = (Nki/Qz)5ahfm     (mod72)    if 7|a,

i log e2 = 2ab{m     (mod72) if 7|¿>,

¿loge6 = {a2- l)aZ>vW    (mod72)

if Nk¡/Qe = l,a = ±1 (mod 7),

éloge8 = 6(a2 - 2)abjm~    (mod72)

if Nk ,qZ — 1, a = ±3 (mod 7),

^loge16^ 5(a2 - 8)aZ>Vm     (mod72)

if Nkl/QE = -1.1" ±1 (mod 7),

iloge6= (a2 + ï)ab{m     (mod72)

if A^ /Qe = -1, a = +2 (mod 7),

T^loge16^ 5(a2 + 12)ab{m~    (mod72)

(9)        loge =

if TV*i/<?s = -l,a = ±3 (mod7).
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Lastly we treat /?(£). The fact that NK /k£ = ±1 implies that if 7 + m then

a3 + 3aß2m = ±1 (mod p) and 3a2ß + ß3m = 0 (mod p). On the other hand,

4 NKi/Fi = a2 - ß2m = 4. Hence, one has that if 7 1 m, then a = ± 1, + 2 (mod p),

and if 7|m, then a = ±2 (mod p) because 7ß = 0 (mod p2). Then it is easy to see

that the following congruences hold:

¿6 = 1 + 2{a2 - l)2 + 4(a2- l)(a2 - 3)aß{m     (mod p3)     if a = ±1 (mod p),

|2 = 1 + 4(a2 - 4 + apVm )    (mod p3)

It follows from these that

if a = +2 (mod p).

'ilogl6^ 3(a2- l)(a2- 3)a0i/m     (mod p3)

if 7 1 m, a = ±1 (mod p ),

log I = { ilog£2 = 2aß]fm    (mod p3)    if 7 + m, a = ±2 (mod p),

¿log£2 s aß(2 + 2ß2m + ß4m2)Jm~

+ ^aßW(2 - 2ß2m - 4ß4m2)Jm     (mod p3)    if7|m.

We now assume that 7 + m and put aß = c0 + cxir + c2772 with rational integers

c0, c,, c2. It is easy to verify that if a = ±1 (mod p), then c^m = 4 (mod7) and

(a2 - l)(a2 - 3)a/S * cxir + (3c0cxm + c2)ir2 (mod p3), and if a = ±2 (mod p),

then c0 = 0 (mod 7). Thus, by making use of (6), (7), it follows from (5) that

,    ,    R(t)= i7ci(3ci + 3coc¡m + ci)m    (mod72)     if a = ±1 (mod p),

\l4cx(3cx + c2)m    (mod72) if a = ±2 (mod p).

We next assume that 7|m and put 7a/8 = d2ir2 + d2ir3 + d4ir4 with rational integers

d2, d3, d4. In this case, NK /k£,2 = 1 implies that d3 = d2 + 2d\m' (mod7). Then,

by easy calculation, it follows from (5) that

(11) Ä(|) s 7d2(d¡ - dim'2 - 2dAm')íl +   ^-        (mod72).

4. Theorems. The following theorem is obtained from (l)-(3) and (8)—(11):

Theorem 1. With the notation above, ifl 1 m, then

m\12 loge/<(£)

2h2~     \lle    7Wm"     '    (
mod 7),

where loge and R(¡¡.) are given by (9) and (10), respectively, and if l\m and

m' = m/1 = 1,2 or 4 (mod 7), then

24
abd2{d\m'2 - d\m' - 2dA)hx    (mod7).
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As corollaries of this theorem, the following two theorems hold:

Theorem 2. With the notation above, assume that 1 + m. Then, l\h2 if and only if

l\hx or one of the following conditions is satisfied:

(1) Nk¡/Qe = 1 and a = 0, ±1, ±10 (mod 72).

(2) Nk\/Qe = -1 and a = 0, ± 12, ± 20, ± 24 (mod 72).

(3)b = 0(mod72).

(4) c, = 0 (mod 7) or c, + c0cjm = 2c2 (mod 7).

Theorem 3. With the notation above, assume that l\m and m' = 1,2 or 4 (mod 7).

Then, l\h2if and onlyifl\hx or one of the following conditions is satisfied:

(l)b = 0(mod7).

(2) d2 = 0 (mod 7) or dim'2 - d\m' = 2d4 (mod 7).

Regarding the conditions in the above two theorems we give the following remark

(cf. [5, Theorem 1]):

Remark. (1) When 7 + m and a = ± 1 (mod p), cx = 0 (mod 7) and c, + c0c2m =

2c2 (mod 7) are necessary and sufficient conditions for £12£'6 * 1 (mod p4) and

|6|'12 = l (mod p4), respectively.

(2) When 7 1 m and a = ±2 (mod p), c, = 0 (mod 7) and c, = 2c2 (mod 7) are

necessary and sufficient conditions for £4£'2 = 1 (mod p4) and £2£'4 = 1 (mod p4),

respectively.

(3) When 7|m, d2 = 0 (mod 7) and d\m'2 - d\m' = 2d4 (mod 7) are necessary

and sufficient conditions for £2£'4 = 1 (mod $7) and £4£'2 = 1 (mod $7), respec-

tively. Herein, ^s is a unique prime ideal of Kx lying above (7). Therefore, it can be

shown that the assertion of Theorem 3 holds without any restriction on m'.

Finally we give numerical examples for small m (cf. [3]).

The case where 1 \ m.

m = 2, e = 1 + {2, £ = 11 + 4t7 + (12 + IO77 + 2t72)v/2, e = 4, (c0, cx, c2) =

(3,2,3) (mod7), hx = 1,A2 = 4;
m = 3, e = 2 + JJ, | = 293 + 210t7 + 36t72 + (154 + 96t7 + 14t72)v/3 , e = 12,

(c0,cx,c2)= (0,1,0) (mod7), A, =l,h2 = 4;

m = 5, e = ¿(I + v/5"), £ = i(107 + 77t7 + IO772 + (49 + 34t7 + 6ir2)fi), e =

12,(c0,c1,c2) = (0,5,2)(mod7),/i1 = l,/i2 = 2;

m = 6, e = 5 + 2\/6, £ = 673 + 588tt + IO8772 + (154 + 48tt + 2t72)v/6 , e = 12,

(c0)ei,c2)3(0,3,l)(mod7),Äi = 1,A2 = 28;

m = 10, e = 3 + i/ÏÔ, £ = 10779 + 714Û77 + 1120tt2 + (3472 + 236677 +

386772)v/ÏÔ",e= 12, (c0, cx, c2) = (0,0,3) (mod7), A, = 2,A2 = 28.

The case where 71 m.

m = l, e = 8 + 3\/7, £ = 15 + 1277 + 2t72 + ^(28 + 14t7 + 2t72)/7 , e = 12,

(rf2, ¿3, d4) m (1,3,2) (mod7), hx = h2 = 1;

m = 14, e = 15 + 4v/Ï4, £ = 83 + 64tt + 12t72 + ^(126 + 70t7 + 8772)yi4, e =

12, (d2, d3, d4) = (3,6,5) (mod7), hx = h2 = 1;

m = 77, e = \(9 + \lll ), £ = 1(2231 + 143077 + 220t72 + \{\%91 +

133077+220t72)v/77), e = 12, (d2, d3, d4) = (1,2,2) (mod7), A, = A2 = 1;
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m = 455, e = 64 + Sy^, £ = 992879 + 68841Û77 + 115470t72 + ^(312774 +

20323877 + 30804772)\/455", e = 3, (d2, d3, d4) = (5,1,0) (mod7), A, = 4, A2 = 224;

m = 497, e = 1201887 + 53912^/497, £ = ^(1762 + 1127t7 + I68772 + 1(588 +

41377 + 70t72)v/497), e= 3, (d2, d3, d4) = (0,0,6) (mod 7), Ax = 1,A2 = 28.
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