CLASS NUMBER RELATION BETWEEN CERTAIN SEXTIC NUMBER FIELDS

AKIRA ENDÔ

Abstract

The congruence relation modulo 7 between the class numbers of the real and imaginary sextic subfields of the extension of a quadratic number field obtained by adjoining a seventh root of unity is studied.

1. Introduction. The aim of this note is to study the congruence relation modulo 7 between the class numbers of the real and imaginary sextic subfields of the extension of a quadratic number field obtained by adjoining a seventh root of unity.
Let $m>1$ be a square free rational integer, $\zeta=e^{2 \pi \sqrt{-1} / 7}$ a primitive seventh root of unity and Q the field of rational numbers. Let

$$
K=Q(\sqrt{m}, \zeta)
$$

which is of degree 12 over Q and has the following subfields:

$$
\begin{gathered}
K_{0}=Q(\zeta), \quad K_{1}=Q\left(\sqrt{m}, \zeta+\zeta^{-1}\right), \quad K_{2}=Q\left(\sqrt{-7 m}, \zeta+\zeta^{-1}\right), \\
F=Q\left(\zeta+\zeta^{-1}\right), \quad k=Q(\sqrt{m}, \sqrt{-7}), \\
k_{0}=Q(\sqrt{-7}), \quad k_{1}=Q(\sqrt{m}), \quad k_{2}=Q(\sqrt{-7 m}) .
\end{gathered}
$$

K_{0}, K_{1} and K_{2} are cyclic sextic extensions of Q, and K_{1} is the maximal real subfield of $K . F$ is a cyclic cubic extension of Q and the maximal real subfield of K_{0} and also of K_{2}. Denote the class numbers of K and K_{i} by h and $h_{i}(i=1,2)$, respectively. In this note, we obtain a congruence relation modulo 7 between h_{1} and h_{2} by making use of the continuity of p-adic L-functions.
2. Class number relations. For any subfield Ω of K, U_{Ω} and W_{Ω} denote the unit group of Ω and its subgroup of all roots of unity in Ω, respectively. Put $Q_{K}=$ $\left(U_{K}: U_{K_{1}} W_{K}\right)$ and $Q_{2}=\left(U_{K_{2}}: U_{F} W_{K_{2}}\right)$ (cf. [1]). That $Q_{2}=1$ can be proved by the argument similar to that in the proof of Theorem 1 in [4]. Hence one sees that $Q_{K}=\left(U_{K}: U_{K_{0}} U_{K_{1}} U_{K_{2}}\right)$.

Let \mathfrak{X} denote the set of Dirichlet characters attached to K. Let \mathfrak{X}^{+}and \mathfrak{X}^{-}be the set of even and odd characters in \mathfrak{X}, respectively. Furthermore, χ_{0} denotes the principal character.

[^0]Note that both of the class numbers of F and K_{0} are equal to 1 . Since $2 h=Q_{K} h_{1} h_{2}[6$, Theorem (6.3)], it follows that

$$
\frac{7}{w_{K}} h_{2} \prod_{\chi \in \mathfrak{X}^{-}}(1-\chi(7)) \equiv \frac{R_{1} h_{1}}{\sqrt{D_{1}}} \prod_{\chi \in \mathfrak{X}^{+}-\left\{\chi_{0}\right\}}\left(1-\frac{\chi(7)}{7}\right)(\bmod 7)
$$

where w_{K} is the number of roots of unity in K, D_{1} is the discriminant of K_{1}, and R_{1} is the 7 -adic regulator of K_{1} [2, Theorem 1]. D_{1} is given by

$$
D_{1}=\left\{\begin{array}{lll}
7^{4} m^{3}, & 7+m, & m \equiv 1(\bmod 4) \\
7^{4}(4 m)^{3}, & 7+m, & m \equiv 2,3(\bmod 4) \\
7^{2} m^{3}, & 7 \mid m, & m \equiv 1(\bmod 4) \\
7^{2}(4 m)^{3}, & 7 \mid m, & m \equiv 2,3(\bmod 4)
\end{array}\right.
$$

Therefore, if $7+m$, then $w_{K}=14$ and

$$
\begin{equation*}
\frac{1}{2} h_{2} \equiv \frac{R_{1}}{7^{2} m \sqrt{m}} h_{1}\left(1-\frac{1}{7}\left(\frac{m}{7}\right)\right) \quad(\bmod 7) \tag{1}
\end{equation*}
$$

and if $7 \mid m$ and $m=7 m^{\prime}$, then

$$
\begin{equation*}
\frac{7}{w_{K}} h_{2}\left(1+\left(\frac{m^{\prime}}{7}\right)\right) \equiv \frac{R_{1}}{7 m \sqrt{m}} h_{1} \quad(\bmod 7) \tag{2}
\end{equation*}
$$

In order to calculate R_{1}, we must determine a system of fundamental units of K_{1}. For any $x \in F, x^{\prime}$ means the image of x under an automorphism of F which maps ζ to ζ^{2}. Let $\eta=\zeta+\zeta^{-1}$; then η and η^{\prime} constitute a system of fundamental units of F. Let $\varepsilon=\frac{1}{2}(a+b \sqrt{m})>1$ be the fundamental unit of k_{1}. Furthermore, let $\xi=$ $\frac{1}{2}(\alpha+\beta \sqrt{m}), \alpha, \beta \in F$, be a unit of K_{1} such that ξ and $\xi^{\prime}=\frac{1}{2}\left(\alpha^{\prime}-\beta^{\prime} \sqrt{m}\right)$ constitute a system of relative fundamental units of K_{1}, i.e., $-1, \xi$ and ξ^{\prime} generate a subgroup of all units in $U_{K_{1}}$ whose relative norms to F and to k_{1} are 1 and ± 1, respectively (cf. [3]). Note that α is an integer of F and that β or 7β is an integer of F according as $7+m$ or $7 \mid m$.

If the equation $x^{2}= \pm \eta^{r} \eta^{\prime s} \xi$ for $(r, s)=(1,0),(0,1)$ or $(1,1)$ has a solution in K_{1}, when the equation $y^{2}= \pm \eta^{-s} \eta^{\prime r-s} \xi^{\prime}$ also has a solution in K_{1}, let $\eta_{0}=\sqrt{ \pm \eta^{r} \eta^{\prime s} \xi}$ and $\eta_{0}^{\prime}=\sqrt{ \pm \eta^{-s} \eta^{\prime r-s} \xi^{\prime}}$; otherwise let $\eta_{0}=\eta$ and $\eta_{0}^{\prime}=\eta^{\prime}$. And, if the equation $z^{3}=\varepsilon^{ \pm 1} \xi \xi^{\prime}$ has a solution in K_{1}, let $\xi_{0}=\sqrt[3]{\varepsilon^{ \pm 1} \xi \xi^{\prime}} ;$ otherwise let $\xi_{0}=\xi$. Then ε, η_{0}, $\eta_{0}^{\prime}, \xi_{0}$ and ξ^{\prime} constitute a system of fundamental units of K_{1} [3]. Accordingly, if e is the index of the subgroup generated by $-1, \varepsilon, \eta, \eta^{\prime}, \xi$ and ξ^{\prime} in $U_{K_{1}}$, then $e=1,3,4$ or 12 . Hence, after easy calculation, one has

$$
\begin{equation*}
R_{1}=\frac{12}{e} \log \varepsilon R(\eta) R(\xi) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
R(\eta)=(\log \eta)^{2}+(\log \eta)\left(\log \eta^{\prime}\right)+\left(\log \eta^{\prime}\right)^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
R(\xi)=(\log \xi)^{2}-(\log \xi)\left(\log \xi^{\prime}\right)+\left(\log \xi^{\prime}\right)^{2} \tag{5}
\end{equation*}
$$

where \log is the 7 -adic logarithm.
3. Calculating the 7 -adic regulator. In this section, we calculate the 7 -adic regulator R_{1} of K_{1}. First, let $\pi=\zeta+\zeta^{-1}-2$ and $\mathfrak{p}=(\pi)$; then \mathfrak{p} is a unique prime ideal of F lying above (7): $\mathfrak{p}^{3}=(7)$. It is easy to verify that

$$
\begin{align*}
& \pi^{2}+\pi \pi^{\prime}+\pi^{\prime 2}=-7\left(\pi+\pi^{\prime}+2\right) \equiv-14 \quad\left(\bmod \mathfrak{p}^{4}\right) \tag{6}\\
& 2 \pi^{3}+\pi^{2} \pi^{\prime}+\pi \pi^{\prime 2}+2 \pi^{\prime 3} \equiv 3 \pi^{3} \equiv-21 \quad\left(\bmod \mathfrak{p}^{4}\right) \tag{7}
\end{align*}
$$

Since $\eta^{6} \equiv 1+3 \pi+2 \pi^{2}\left(\bmod \mathfrak{p}^{3}\right), \log \eta=\frac{1}{6} \log \eta^{6} \equiv 4 \pi-\pi^{2}\left(\bmod \mathfrak{p}^{3}\right)$. Hence, by making use of (6), (7), it follows from (4) that

$$
R(\eta) \equiv 2\left(\pi^{2}+\pi \pi^{\prime}+\pi^{\prime 2}\right)-4\left(2 \pi^{3}+\pi^{2} \pi^{\prime}+\pi \pi^{\prime 2}+2 \pi^{\prime 3}\right) \equiv 7 \quad\left(\bmod \mathfrak{p}^{4}\right)
$$

As $R(\eta)$ is a rational 7 -adic integer, this congruence holds modulo 7^{2}, that is,

$$
\begin{equation*}
R(\eta) \equiv 7 \quad\left(\bmod 7^{2}\right) \tag{8}
\end{equation*}
$$

We next consider $\log \varepsilon$. Here and hereafter $N_{.}$means the norm with respect to the assigned field extension. It is easy to see that the following congruences hold:

$$
\begin{array}{ll}
\varepsilon^{2} \equiv 1+4 a b \sqrt{m} \quad(\bmod 7) & \text { if } 7 \mid m, \\
\varepsilon^{4} \equiv 1-\left(N_{k_{1} / Q} \varepsilon\right) a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } 7 \mid a, \\
\varepsilon^{2} \equiv 1+4 a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } 7 \mid b, \\
\varepsilon^{6} \equiv 1-\left(a^{2}-1\right) a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } N_{k_{1} / Q} \varepsilon=1, a \equiv \pm 1(\bmod 7), \\
\varepsilon^{8} \equiv 1-\left(a^{2}-2\right) a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } N_{k_{1} / Q} \varepsilon=1, a \equiv \pm 3(\bmod 7), \\
\varepsilon^{16} \equiv 1-4\left(a^{2}-8\right) a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } N_{k_{1} / Q} \varepsilon=-1, a \equiv \pm 1(\bmod 7), \\
\varepsilon^{6} \equiv 1-\left(a^{2}+3\right) a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } N_{k_{1} / Q} \varepsilon=-1, a \equiv \pm 2(\bmod 7), \\
\varepsilon^{16} \equiv 1-4\left(a^{2}+12\right) a b \sqrt{m} \quad\left(\bmod 7^{2}\right) & \text { if } N_{k_{1} / Q^{\varepsilon}=-1, a \equiv \pm 3(\bmod 7) .} .
\end{array}
$$

It then follows from these that

Lastly we treat $R(\xi)$. The fact that $N_{K_{1} / k_{1}} \xi= \pm 1$ implies that if $7+m$ then $\alpha^{3}+3 \alpha \beta^{2} m \equiv \pm 1(\bmod \mathfrak{p})$ and $3 \alpha^{2} \beta+\beta^{3} m \equiv 0(\bmod \mathfrak{p})$. On the other hand, $4 N_{K_{1} / F} \xi=\alpha^{2}-\beta^{2} m=4$. Hence, one has that if $7+m$, then $\alpha= \pm 1, \pm 2(\bmod \mathfrak{p})$, and if $7 \mid m$, then $\alpha \equiv \pm 2(\bmod \mathfrak{p})$ because $7 \beta \equiv 0\left(\bmod \mathfrak{p}^{2}\right)$. Then it is easy to see that the following congruences hold:

$$
\begin{array}{lll}
\xi^{6} \equiv 1+2\left(\alpha^{2}-1\right)^{2}+4\left(\alpha^{2}-1\right)\left(\alpha^{2}-3\right) \alpha \beta \sqrt{m} & \left(\bmod \mathfrak{p}^{3}\right) & \text { if } \alpha \equiv \pm 1(\bmod \mathfrak{p}) \\
\xi^{2} \equiv 1+4\left(\alpha^{2}-4+\alpha \beta \sqrt{m}\right) \quad\left(\bmod \mathfrak{p}^{3}\right) & \text { if } \alpha \equiv \pm 2(\bmod \mathfrak{p}) .
\end{array}
$$

It follows from these that

We now assume that $7+m$ and put $\alpha \beta=c_{0}+c_{1} \pi+c_{2} \pi^{2}$ with rational integers c_{0}, c_{1}, c_{2}. It is easy to verify that if $\alpha \equiv \pm 1(\bmod \mathfrak{p})$, then $c_{0}^{2} m \equiv 4(\bmod 7)$ and $\left(\alpha^{2}-1\right)\left(\alpha^{2}-3\right) \alpha \beta \equiv c_{1} \pi+\left(3 c_{0} c_{1} m+c_{2}\right) \pi^{2}\left(\bmod \mathfrak{p}^{3}\right)$, and if $\alpha \equiv \pm 2(\bmod \mathfrak{p})$, then $c_{0} \equiv 0(\bmod 7)$. Thus, by making use of (6), (7), it follows from (5) that

$$
R(\xi) \equiv \begin{cases}7 c_{1}\left(3 c_{1}+3 c_{0} c_{1}^{2} m+c_{2}\right) m\left(\bmod 7^{2}\right) & \text { if } \alpha \equiv \pm 1(\bmod \mathfrak{p}) \tag{10}\\ 14 c_{1}\left(3 c_{1}+c_{2}\right) m \quad\left(\bmod 7^{2}\right) & \text { if } \alpha \equiv \pm 2(\bmod \mathfrak{p})\end{cases}
$$

We next assume that $7 \mid m$ and put $7 \alpha \beta=d_{2} \pi^{2}+d_{3} \pi^{3}+d_{4} \pi^{4}$ with rational integers d_{2}, d_{3}, d_{4}. In this case, $N_{K_{1} / k_{1}} \xi^{2}=1$ implies that $d_{3} \equiv d_{2}+2 d_{2}^{3} m^{\prime}(\bmod 7)$. Then, by easy calculation, it follows from (5) that

$$
\begin{equation*}
R(\xi) \equiv 7 d_{2}\left(d_{2}^{5}-d_{2}^{3} m^{\prime 2}-2 d_{4} m^{\prime}\right)\left(1+\left(\frac{m^{\prime}}{7}\right)\right) \quad\left(\bmod 7^{2}\right) \tag{11}
\end{equation*}
$$

4. Theorems. The following theorem is obtained from (1)-(3) and (8)-(11):

Theorem 1. With the notation above, if $7+m$, then

$$
\frac{1}{2} h_{2} \equiv-\left(\frac{m}{7}\right) \frac{12}{e} \frac{\log \varepsilon R(\xi)}{7^{2} m \sqrt{m}} h_{1} \quad(\bmod 7)
$$

where $\log \varepsilon$ and $R(\xi)$ are given by (9) and (10), respectively, and if $7 \mid m$ and $m^{\prime}=m / 7 \equiv 1,2$ or $4(\bmod 7)$, then

$$
\frac{7}{w_{K}} h_{2} \equiv \frac{24}{e} a b d_{2}\left(d_{2}^{5} m^{\prime 2}-d_{2}^{3} m^{\prime}-2 d_{4}\right) h_{1} \quad(\bmod 7)
$$

As corollaries of this theorem, the following two theorems hold:
Theorem 2. With the notation above, assume that $7+m$. Then, $7 \mid h_{2}$ if and only if $7 \mid h_{1}$ or one of the following conditions is satisfied:
(1) $N_{k_{1} / Q} \varepsilon=1$ and $a \equiv 0, \pm 1, \pm 10\left(\bmod 7^{2}\right)$.
(2) $N_{k_{1} / Q^{\varepsilon}}=-1$ and $a \equiv 0, \pm 12, \pm 20, \pm 24\left(\bmod 7^{2}\right)$.
(3) $b \equiv 0\left(\bmod 7^{2}\right)$.
(4) $c_{1} \equiv 0(\bmod 7)$ or $c_{1}+c_{0} c_{1}^{2} m \equiv 2 c_{2}(\bmod 7)$.

Theorem 3. With the notation above, assume that $7 \mid m$ and $m^{\prime} \equiv 1,2$ or $4(\bmod 7)$. Then, $7 \mid h_{2}$ if and only if $7 \mid h_{1}$ or one of the following conditions is satisfied:
(1) $b \equiv 0(\bmod 7)$.
(2) $d_{2} \equiv 0(\bmod 7)$ or $d_{2}^{5} m^{\prime 2}-d_{2}^{3} m^{\prime} \equiv 2 d_{4}(\bmod 7)$.

Regarding the conditions in the above two theorems we give the following remark (cf. [5, Theorem 1]):

Remark. (1) When $7+m$ and $\alpha \equiv \pm 1(\bmod \mathfrak{p}), c_{1} \equiv 0(\bmod 7)$ and $c_{1}+c_{0} c_{1}^{2} m \equiv$ $2 c_{2}(\bmod 7)$ are necessary and sufficient conditions for $\xi^{12} \xi^{\prime 6} \equiv 1\left(\bmod \mathfrak{p}^{4}\right)$ and $\xi^{6} \xi^{\prime 2} \equiv 1\left(\bmod \mathfrak{p}^{4}\right)$, respectively.
(2) When $7+m$ and $\alpha \equiv \pm 2(\bmod \mathfrak{p}), c_{1} \equiv 0(\bmod 7)$ and $c_{1} \equiv 2 c_{2}(\bmod 7)$ are necessary and sufficient conditions for $\xi^{4} \xi^{\prime 2} \equiv 1\left(\bmod \mathfrak{p}^{4}\right)$ and $\xi^{2} \xi^{\prime 4} \equiv 1\left(\bmod \mathfrak{p}^{4}\right)$, respectively.
(3) When $7 \mid m, d_{2} \equiv 0(\bmod 7)$ and $d_{2}^{5} m^{\prime 2}-d_{2}^{3} m^{\prime} \equiv 2 d_{4}(\bmod 7)$ are necessary and sufficient conditions for $\xi^{2} \xi^{\prime 4} \equiv 1\left(\bmod \mathfrak{B}^{7}\right)$ and $\xi^{4} \xi^{\prime 2} \equiv 1\left(\bmod \mathfrak{B}^{7}\right)$, respectively. Herein, \mathfrak{P} is a unique prime ideal of K_{1} lying above (7). Therefore, it can be shown that the assertion of Theorem 3 holds without any restriction on m^{\prime}.

Finally we give numerical examples for small m (cf. [3]).
The case where $7+m$.
$m=2, \varepsilon=1+\sqrt{2}, \xi=11+4 \pi+\left(12+10 \pi+2 \pi^{2}\right) \sqrt{2}, e=4,\left(c_{0}, c_{1}, c_{2}\right) \equiv$ $(3,2,3)(\bmod 7), h_{1}=1, h_{2}=4$;

$$
m=3, \varepsilon=2+\sqrt{3}, \xi=293+210 \pi+36 \pi^{2}+\left(154+96 \pi+14 \pi^{2}\right) \sqrt{3}, e=12
$$ $\left(c_{0}, c_{1}, c_{2}\right) \equiv(0,1,0)(\bmod 7), h_{1}=1, h_{2}=4$;

$m=5, \varepsilon=\frac{1}{2}(1+\sqrt{5}), \xi=\frac{1}{2}\left(107+77 \pi+10 \pi^{2}+\left(49+34 \pi+6 \pi^{2}\right) \sqrt{5}\right), e=$ $12,\left(c_{0}, c_{1}, c_{2}\right) \equiv(0,5,2)(\bmod 7), h_{1}=1, h_{2}=2$;
$m=6, \varepsilon=5+2 \sqrt{6}, \xi=673+588 \pi+108 \pi^{2}+\left(154+48 \pi+2 \pi^{2}\right) \sqrt{6}, e=12$, $\left(c_{0}, c_{1}, c_{2}\right) \equiv(0,3,1)(\bmod 7), h_{1}=1, h_{2}=28$;
$m=10, \quad \varepsilon=3+\sqrt{10}, \quad \xi=10779+7140 \pi+1120 \pi^{2}+(3472+2366 \pi+$ $\left.386 \pi^{2}\right) \sqrt{10}, e=12,\left(c_{0}, c_{1}, c_{2}\right) \equiv(0,0,3)(\bmod 7), h_{1}=2, h_{2}=28$.

The case where $7 \mid m$.
$m=7, \quad \varepsilon=8+3 \sqrt{7}, \quad \xi=15+12 \pi+2 \pi^{2}+\frac{1}{7}\left(28+14 \pi+2 \pi^{2}\right) \sqrt{7}, \quad e=12$, $\left(d_{2}, d_{3}, d_{4}\right) \equiv(1,3,2)(\bmod 7), h_{1}=h_{2}=1$;
$m=14, \varepsilon=15+4 \sqrt{14}, \xi=83+64 \pi+12 \pi^{2}+\frac{1}{7}\left(126+70 \pi+8 \pi^{2}\right) \sqrt{14}, e=$ $12,\left(d_{2}, d_{3}, d_{4}\right) \equiv(3,6,5)(\bmod 7), h_{1}=h_{2}=1$;
$m=77, \quad \varepsilon=\frac{1}{2}(9+\sqrt{77}), \quad \xi=\frac{1}{2}\left(2231+1430 \pi+220 \pi^{2}+\frac{1}{7}(1897+\right.$ $\left.\left.1330 \pi+220 \pi^{2}\right) \sqrt{77}\right), e=12,\left(d_{2}, d_{3}, d_{4}\right) \equiv(1,2,2)(\bmod 7), h_{1}=h_{2}=1$;
$m=455, \varepsilon=64+3 \sqrt{455}, \quad \xi=992879+688410 \pi+115470 \pi^{2}+\frac{1}{7}(312774+$ $\left.203238 \pi+30804 \pi^{2}\right) \sqrt{455}, e=3,\left(d_{2}, d_{3}, d_{4}\right) \equiv(5,1,0)(\bmod 7), h_{1}=4, h_{2}=224 ;$ $m=497, \quad \varepsilon=1201887+53912 \sqrt{497}, \quad \xi=\frac{1}{2}\left(1762+1127 \pi+168 \pi^{2}+\frac{1}{7}(588+\right.$ $\left.\left.413 \pi+70 \pi^{2}\right) \sqrt{497}\right), e=3,\left(d_{2}, d_{3}, d_{4}\right) \equiv(0,0,6)(\bmod 7), h_{1}=1, h_{2}=28$.

Acknowledgement. The author would like to express his thanks to the referee for valuable suggestions.

References

1. H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
2. A. Kudo, On a class number relation of imaginary abelian fields, J. Math. Soc. Japan 27 (1975), 150-159.
3. S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Math., Vol. 797, Springer-Verlag, Berlin and New York, 1980.
4. C. J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comput. 31 (1977), 1019-1029.
5. \qquad , On the class number of relative quadratic fields, Math. Comput. 32 (1978), 1261-1270.
6. C. D. Walter, Kuroda's class number relation, Acta Arith. 35 (1979), 41-51.

Department of Mathematics, Kumamoto University, Kumamoto 860, Japan

[^0]: Received by the editors May 7, 1984 and, in revised form, October 10, 1984.
 1980 Mathematics Subject Classification. Primary 12A35, 12A50.
 Key words and phrases. Sextic number field, class number, p-adic L-function.

