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SINGULAR SOLUTIONS OF THE HEAT EQUATION
WITH ABSORPTION

S. KAMIN AND L. A. PELETIER

ABSTRACT. In this paper we prove that the source-type solutions converge—

when the total initial mass tends to infinity—to the very singular solution

obtained in [3].

1.   Introduction.  In a recent paper [3], Brezis, Peletier and Terman found a

very singular solution (VSS) of the equation

(1) ut = Ait - up   in S = Rn x (0, oo)

when p < (n + 2)/n. By this they meant a function W(x, t) with the properties

(i) W is smooth in S, except at (0,0);

(ii) W > 0 in S;

(iii) W(x,0) = 0 for all x <= R"\{0};
(iv) W is more singular than the fundamental solution E of the heat equation

(2) E(x,t) = (47rí)-n/2exp(-|x|2/4í);

specifically

W(x, t)dx -* oo    as í | 0.L/R"

The function W they found was of the form

(3) W(x,t) = r1^p^f(\x\/t1/2)

where f(rj) is a solution of the problem

J/.^-zi + jQ/. + JL-/-/... „„(o,»),
| / > 0 and / is smooth on [0, oo),

[ /'(0) = 0 and K^xi/^-'l/W = 0.

It was shown that this solution / is unique, and that it behaves as n —► oo like

(4) f(v) = co eM-V/*toa/(^l!)-*[i + oor2)],

where en is a known positive constant.

Besides this very singular solution, equation (1) has a one parameter family of

solutions Vc, c > 0, which we shall call singular solutions (SS). They share the

properties (i)-(iii) with W, but

(iv*) Vc(x,0)=cr5(x) inR".
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It was shown by Brezis and Friedman [1] that when p < (n + 2)/n, the solution

Vc exists and is unique for any c > 0. In addition, it was shown in [3] that

\Vc(x, t) - cE(x, t)\ < AcpfyE(x, t)    for (x, t) e S

where A > 0 and v — (n/2)((n + 2)/n — p), and hence that Vc has the same

singularity at (0,0) as E.

It is the object of this paper to show that, if p < (n + 2)/n, the very singular

solution W can be obtained as the limit of singular solutions Vc as c —> oo.

THEOREM l.   Letp< (n + 2)/n.  Then

lim VJx,t) = W{x,t)    for (x,i) G 5\{(0,0)}
C—KX>

uniformly on compact sets.

An analogous situation exists for the elliptic equation

(5) -Au + up = c6(x)   inRn

in which c > 0. For p < n/(n — 2), equation (5) has a uniquely determined very

singular solution W, which can be obtained as the limit of singular solutions Vc,

which behave near the origin like cE, where E is now the fundamental solution of
-A [2, 4, 7, 8].

As a by-product of the proof of Theorem 1 we shall obtain the following asymp-

totic result:

THEOREM 2.   Letp< (n + 2)/n. Then for each c> 0,

Iimt1/<^1>Ve(*Jt) = /(M/*1/a),
t—>oo

where f is the solution of Problem (P), uniformly on the family of sets Pa defined

by
Pa = {xeRn:\x\<at1/2},        a > 0.

2. SS -► VSS. Consider the problem

,n j ut = Au — up    in S,
W \u(x,0) = h(x)    inRn,

in which h is a nonnegative function in L°°(R").   It is well known [6] that this

problem has a unique solution, which satisfies (1) in a classical sense.

We begin with a result taken from Brezis and Friedman [1, p. 83].

PROPOSITION.   Suppose p < (n + 2)/n. Let {ht} be a sequence in L°°(R") such

that hi > 0 and

h¡(x) —» c6(x)    as I —> oo in D',

with c > 0, and let {v¡} be the sequence of solutions of Problem (I) corresponding

to hi.  Then

vi —► Vc    as I —* oo

uniformly on compact subsets of S\{(0,0)}.

We use this Proposition to derive two properties of the family of solutions {Vc: c >

0}.
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LEMMA 1.   Let 0 < ci < c2 < oo.  Then

VCl (x, t) < VC2 (x, Í)    for (x, t) e 5\{(0,0)}.

PROOF. Let hi(x) = E(x, l/l), where E is defined in (2) and I > 0. Then, by
the properties of E,

hi(x) —> 6(x)    as Z —> oo in £>'.

Let vu and u2; be the solutions of Problem (I) which correspond to, respectively,

cihi and C2/1;. Then by the maximum principle, for all I > 0,

(6) vu(x,t) < vu(x,t)     in S.

By the Proposition,

vu(x, t) -> VCi(x,t)     as I -* 00 (¿ = 1,2)

for every (x, t) € 5\{(0,0)}, whence, in view of (6),

VCl(x,t) <VC2(x,t)     for (i,t)£5\{(0,0)}.

LEMMA 2.   For any c > 0,

Vc(x,í)<W(z,í)    /orS{(0,0)}.

PROOF. Observe that

(7) /   W(x,t)dx=\Si\r1/{p-1)+n/2 H fWv^dn,
JR" JO

where |5i| denotes the surface area of the unit ball. Note that the integral on the

right of (7) converges in view of (4).

Remembering that p < (n + 2)/n, we conclude that, for every c > 0, there exists

a unique rc > 0 such that

W(x,rc)dx = c.L
For A > 0 we define the truncated VSS

WJxt)-iW^x^   XW(x,t)<A,
WA(x,t)-^A aw(x,t)>A.

Then by (7) there exists for any r € (0, rc) a unique positive number A(t) such that

¡RnWA{T)(x,T)dx = C

Let us now define

hi(x) = WA(iß)(x, I//),    I = N,N +1,...,

where N has been chosen so that 1/7V < rc, and let—as before—u¡ be the solution

of Problem (I) which corresponds to the initial value hi. Then, by construction,

hi(x) < W(x, l/l) for x £ Rn, and hence, by the maximum principle,

(8) Ui (x, t) < W(x, l/l)     for (x, t) e S.

Now we let / —> 00.   Then by the construction of the sequence {hi} and the

properties of W, hi(x) —► c6(x) as I —► 00 in D', whence, by the Proposition,

(9) vt(x,t)-+Vc(x,t)     for(x,i)e3\{(0,0)}.
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On the other hand, it is readily seen from the expression (3) for W that

(10) W(x, t + l/l) -* W(x, t)     as / -> oo, for (as, t) e S\{(0,0)}.

Thus, putting (8), (9) and (10) together we find that

Vc(x,t) <W(x,t)     for(i,i)eS\{(0,0)}.

We deduce from Lemmas 1 and 2 the following corollary:

COROLLARY 3.   For every (x,t) 6 5\{(0,0)}, limc^ocVc(x,t) exists.

Thus, we can define the function

(11) U(x,t)=  lim Vc(x,t),        (i,t)eS\{(0,0)},
c—>oo

In the remainder of this section we shall prove that U = W.

LEMMA 4.   The function U defined in (11) has the properties

(i)£/-€Ca.1(S)ni<7(3\{(OjQ)}l;
(ii) Ut = AU- Up in S;
(iii) U(x, t) > 0 for (x, t) G S;

(iv) U(x, 0) = 0 for x e R"\{(0,0)};
(v) JR„ U(x, t) dx —> oo as 110;

(vi) U(x,t) = Û(\x\,t).

PROOF. By Lemma 2, the set of solutions {Vc:c > 0} of equation (1) is locally

bounded in 5. Hence, by standard (interior) regularity theory [6], their limit U

belongs to C72,1(5) and satisfies equation (1). Because the functions Vc are all

positive and increasing in c, U > 0 in S. Next, since for every c > 0,

(12) 0<Vc<W     in~S\{(0,0)}

and W(x, 0) = 0 for x e Rn\{0}, VF is a barrier function at t = 0, ensuring that

U € C(S\{(0,0)}) and that U(x,0) = 0 for all x G R"\{0}.
To prove property (v), we observe that, for any c > 0, / U(x, t)dx > f Vc(x, t) dx

and hence

liminf / U(x,t)dx > lim ; Vc(x,t)dx = c,

the integrals being taken over R™. Since c may be chosen arbitrarily large, the

result follows. Finally, the symmetry property (vi) follows from the fact that the

functions Vc are all endowed with this property.

We know that the function W has all the properties listed for U in Lemma 4,

and we expect it is the only function with these properties. However, as yet we

have not seen a proof.

In the present case, we can deduce from certain scaling properties of the functions

Vc that U must be a similarity solution. This is the content of the next lemma.

LEMMA 5.   The function U can be expressed in the form

U(x,t) = t-^p-Vg(n),        n = \x\/t1'2.

PROOF. Set u(x,t) = Vi(x, t), and define the family of functions

(13) uk(x, t) = ^/("-^uifci, k2t),        k > 0.
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Then for each k > 0, Uk is a solution of the problem

ut = Au-up   in S,

[    ' u(x,0) = k2/(p-^6(kx)    inR".

Observe that the initial condition (14) may be replaced by

u(x,0) = k2^p-1)~n6(x).

Thus, defining the function c(k) = fc2/^-1^", we obtain, in view of the uniqueness

oïVc,

uk(x,t) = Vc(k)(x,t).

Note that since p < (n + 2)/n, c(k) —> oo as k —> oo, and hence,

(15) uk(x,t)^U(x,t)    as fc^oofor (i,i) G5\{(0,0)}.

Now let / > 0. Then

(16) ukl(x,t) = (kl)2^p-^u(klx,(kl)2t) = l2^p^uk(lx,l2t).

Hence, if we let k —> oo in (16) and we use (15) we obtain

(17) U(x,t) = l1/(p-VU(lx,l2t).

Finally, setting I — f-1/2, we obtain

u(x, t) = rVb-Vuix/t1/2, i) = ri'<*-1'>u(\x\/tí'3, i)

which is the desired form if we set g(r) = U(r, 1).

It is easily verified that the properties (i)-(vi) of U, listed in Lemma 4, ensure

that g is a solution of Problem (P). By the uniqueness theorem for this problem [3]

we may conclude that g = f and hence that U — W. This proves Theorem 1.

REMARK. Note that the proof of Lemma 5 hinges on two invariance properties

off/:

(a) invariance with respect to scaling: see (17);

(b) invariance with respect to rotations: see Lemma 4(vi).

The fact that we have a uniqueness theorem for precisely this class of functions

enables us to state that U = W.

Using the scaling method of [5], we can deduce from (13) the limiting behaviour

of Vc(x, t) as t —> oo. For if we set t = 1 and let k —> oo in (13) we obtain

lim k2/ip-1]Vc(kx,k2) = U(x,l)
k—>oo

uniformly on bounded sets in Rn. Thus, with k2 = s and kx = y, we find that

lim aVb-VVefae) = U(ylsl'2,l) = f(\y\/s1'2),
3—»OO

uniformly on sets Pa = {(y, s): \y\ <  as1/2}, a > 0. This proves Theorem 2.
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