EXAMPLES ON HARMONIC MEASURE AND NORMAL NUMBERS¹

JANG-MEI WU

ABSTRACT. Suppose that F is a bounded set in \mathbf{R}^m , $m \geq 2$, with positive capacity. Add to F a disjoint set E so that $E \cup F$ is closed, and let $D = \mathbf{R}^m \setminus (E \cup F)$. Under what conditions on the added set E do we have harmonic measure $\omega(F,D) = 0$? It turns out that besides the size of E near F, the location of E relative to F also plays an important role. Our example, based on normal numbers, stresses this fact.

Suppose that F is a bounded set in \mathbf{R}^m , $m \geq 2$, with positive capacity. Add to F a disjoint set E so that $E \cup F$ is closed, and let $D = \mathbf{R}^m \setminus (E \cup F)$. Under what conditions on the added set E do we have harmonic measure $\omega(F, D) = 0$? It turns out that besides the size of E near F, the location of E relative to F also plays an important role. Our example, based on normal numbers, stresses this fact.

THEOREM. Let D be a bounded domain in \mathbf{R}^m , $m \geq 2$, F be a subset of ∂D with $\Lambda^{m-1}(F) = 0$, and $E = \mathbf{R}^m \setminus (D \cup F)$. Suppose that F lies also on some quasi-smooth curve Γ when m = 2, on some BMO₁ surface Γ when $m \geq 3$. And suppose that at each $a \in F$, $0 < r < \frac{1}{4}$, there is a closed set $T \subseteq E \cap B(a, r)$ so that

(1)
$$\operatorname{capacity}(T) \ge \operatorname{capacity}(B(0, c_1 r))$$

and

(2)
$$\operatorname{dist}(T, F) > c_2 r;$$

also

(3)
$$\operatorname{diam}(T) < c_2 r/3 \quad when \ m = 2,$$

where c_1 and c_2 are constants in (0,1). Then $\omega(F,D)=0$.

By B(a,r) we mean $\{x \in \mathbf{R}^m : |x-a| < r\}$; and by capacity we mean (m-2)-capacity if $m \geq 3$, and logarithmic capacity if m = 2. See [2, 1.XIII] for their properties.

When $m \geq 3$, (1) is equivalent to

(1') capacity
$$(T) \ge c$$
 capacity $B(0, r)$.

However, when m=2, (1) is more restrictive than (1').

The surface Γ and ∂D are in general distinct; no smoothness condition is imposed on ∂D . The problem is very different if ∂D is quasi-smooth or BMO₁ (see [4]). When $m \geq 3$, topological properties of D are less important in studying $\omega(F, D)$:

Received by the editors December 18, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30C85, 31A15, 31B05, 31B15.

¹Research partially supported by the National Science Foundation.

there exist a topological ball D in \mathbb{R}^3 , a set F lying on ∂D and on a plane, so that $\dim(F) = 1$, but $\omega(F, D) > 0$ [9].

In the theorem, we have three conditions on F: (a) it lies on a surface Γ with minimum smoothness, (b) $\mathbf{R}^m \setminus (D \cup F)$ is big near each point in F in the capacity sense, and (c) $\mathbf{R}^m \setminus (D \cup F)$ is untangled from F as in (2). Γ cannot be too general, the theorem is not true if Γ is a quasi-circle (see [7]) and it is quite clear that (1) in some sense is necessary. We shall show in Example 3 that if (a) and (b) are satisfied, but the part of $\mathbf{R}^m \setminus (D \cup F)$ that is big near F is not separated from F, we may still have $\Lambda^{m-1}(F) = 0$ but $\omega(F) > 0$.

The proof shows that the theorem still holds when F lies on a slightly more general surface, namely,

(4) Γ is a topological sphere in \mathbf{R}^m , whose interior Ω_1 and exterior Ω_2 are both nontangentially accessible domains, and on Γ , $\Lambda^{m-1}(E) = 0 \Rightarrow \omega(E, \Omega_i) = 0$ for i = 1, 2.

See [4] for the definitions of quasi-smooth curves (also called chord-arc), BMO₁ surfaces and nontangentially accessible domains, and their relations.

This theorem is an improvement of the one in [9]. There $\mathbb{R}^m \setminus D$ satisfies a corkscrew condition; that is, T can be chosen to be a ball in \mathbb{R}^m with

(5) radius
$$T > cr$$
.

It is also closely related to Theorem 2 in [8] and Theorem 3 in [7] when m=2 and D is simply-connected. However, the present theorem does not imply the results in [7 or 8], because, for a set F lying on the boundary of a simply-connected domain, we may not be able to find T so that the conditions (1) and (2) are both fulfilled.

To prove the theorem, we assume that Γ satisfies the more general condition (4) and follows the steps in [9]. Because our assumption on the size of T is in terms of capacity, which is weaker than (5), we need a replacement of (5) in terms of harmonic measure, which is sufficient for the proof of the theorem. First, by the countable subadditivity of capacity for $m \geq 3$ and by (3) for m = 2, we can find c_3, c_4 depending on m, c_1 , and c_2 only so that, for any $a \in F$, $0 < r < \frac{1}{4}$, there exists $P \in B(a, r)$ with $\operatorname{dist}(P, F) > 3c_3r$ and

$$\operatorname{capacity}(B(P,c_3r)\cap T)>\operatorname{capacity}(B(a,c_4r)).$$

Therefore, for $|Q - P| = 2c_3r$,

$$w^Q(T \cap \overline{B(P, c_3r)}, B(P, 3c_3r) \setminus (T \cap \overline{B(P, c_3r)})) > c_5 > 0.$$

We remark that when m=2, these statements do not follow from (1'). The rest of the proof follows the similar lines as in [9].

Here are some applications.

EXAMPLE 1. In \mathbf{R}^m , there exist disjoint sets E and F in $B(0, \sqrt{m})$, whose union $E \cup F$ is closed, of zero Λ^{m-1} -measure, and each of which has positive capacity. However, $\omega(E,D) > 0$, $\omega(F,D) = 0$ where $D = B(0,m) \setminus (E \cup F)$. Moreover, for any β, α in [m-2,m-1], E and F can be chosen with dim $E = \beta$ and dim $F = \alpha$; in particular, it is possible to have dim E = m-2, dim F = m-1.

We give the construction for m=3; some necessary changes are needed for other m's. Given a sequence $\{r_n\}_1^{\infty} \supseteq (0, \frac{1}{2})$, we construct the corresponding Cantor set

S: Let $S_{0,1} = [0,1]$; $S_{1,1}$ and $S_{1,2}$ be the two closed intervals of length r_1 each, left after the middle $(1-2r_1)$ portion of [0,1] is removed. At the *n*th step, let $\{S_{n,k}\}_{k=1}^{2^n}$ be the closed intervals of length $\prod_{1}^{n} r_j$ each, left after the middle $(1-2r_n)$ portion of each $\{S_{n-1,k}\}_{1}^{2^{n-1}}$ is removed. Let

$$S = \bigcap_{1}^{\infty} \bigcup_{k=1}^{2^n} S_{n,k}.$$

Let $\{A_{n,l}\}_{l=1}^{4^n} = \{S_{n,k} \times S_{n,j} : 1 \leq k, j \leq 2^n\}$ and $A = \bigcap_{n=1}^{\infty} \left(\bigcup_{l=1}^{4^n} A_{n,l}\right)$ the Cantor set on $[0,1] \times [0,1]$. We choose

(6)
$$r_{n} = \begin{cases} \frac{1}{4} \left(\frac{n+3}{n+2} \right)^{2}, & \alpha = 1, \\ 4^{-1/\alpha}, & 1 < \alpha < 2, \\ \frac{1}{2} \frac{n}{n+1}, & \alpha = 2. \end{cases}$$

Standard calculation shows that dim $A = \alpha$, $\Lambda^2(A) = 0$ and 1-capacity $A \equiv c_{\alpha} > 0$. We let $A \times \{0\}$ in A^3 .

Following the construction of A, we may construct a Cantor set $E_{n,l}$ in $A_{n,l} \times \{\prod_{1}^{n} r_{j}\} \subseteq \mathbf{R}^{2} \times \{\prod_{1}^{n} r_{j}\} \subseteq \mathbf{R}^{3}$ satisfying dim $E_{n,l} = \beta$, $\Lambda^{2}(E_{n,l}) = 0$ and

(7)
$$\operatorname{capacity}(E_{n,l}) = c_{\beta} \times \prod_{1}^{n} r_{j}.$$

Let $E = \bigcup_{n=1}^{\infty} \left(\bigcup_{l=1}^{4^n} E_{n,l}\right)$, thus dim $E = \beta$, $\Lambda^2(E) = 0$ and capacity(E) > 0. Let $D = B(0,m) \setminus (E \cup F)$. Because of (7), we see that, at each $a \in F$, for $\sqrt{m} \prod_{1}^{n} r_j \le r < \sqrt{m} \prod_{1}^{n-1} r_j$, there exists some $E_{n,l}$ so that

$$\operatorname{dist}(E_{n,l},A) > cr$$
 and $\operatorname{capacity}(E_{n,l}) > cr$.

From the theorem, it follows that $\omega(F, D) = 0$. Since

$$\operatorname{capacity}(E \cup F) > 0,$$

we must have $\omega(E, D) > 0$.

EXAMPLE 2. Let

$$r_n = \left\{ egin{array}{ll} (n+2)^{-1}, & & lpha = 0, \ 2^{-1/lpha}, & & 0 < lpha < 1, \ n/2(n+1), & & lpha = 1. \end{array}
ight.$$

Let α_1 and α_2 be numbers in [0,1], not both zero, and S_j , j=1,2, be the Cantor set on [0,1] corresponding to $\{r_n\}$ with $\alpha=\alpha_j$. Clearly, dim $S_j=\alpha_j$. Let $D=\mathbf{R}^2\setminus (S_1\times S_2)$ be the domain in \mathbf{R}^2 , whose boundary is the planar Cantor set $S_1\times S_2$ of dimension $\alpha_1+\alpha_2$. Then any line parallel to either coordinate axis meets ∂D on a set of zero harmonic measure and of dimension α_1 or α_2 . The example is particularly interesting when $\alpha_1=0$ (or $\alpha_2=0$).

Some complementary examples on domains whose boundaries consist of other Cantor sets can be found in [8].

The next example shows that condition (2)—ensuring that E and F are untangled—is not superfluous.

The author thanks R. Kaufman for bringing the concept of normal numbers to her attention.

EXAMPLE 3. In \mathbb{R}^m , there exist disjoint sets E and F in $B(0, \sqrt{m}) \cap (R^{m-1} \times \{0\})$, with the properties that each set has zero Λ^{m-1} -measure, positive capacity, that $E \cup F$ is closed, and that, for any $a \in F$, $0 < r < \frac{1}{4}$,

(8) capacity
$$(B(a,r) \cap E) >$$
 capacity $B(0,cr)$.

However, w(F, D) > 0, where $D = B(0, m) \setminus (E \cup F)$. Moreover, for any $\alpha \in (m-2, m-1]$, we can choose E and F so that $\dim(E \cup F) = \alpha$.

We first consider the case m=3 and $1<\alpha\leq 2$, and let r_n be as in (6), S and A be the Cantor sets on [0,1] or on $[0,1]\times[0,1]$ as defined in Example 1, and let $D=B(0,3)\backslash A$. We identify \mathbb{R}^2 with $\mathbb{R}^2\times\{0\}$.

We represent a number $a \in S$ by (a_1, a_2, a_3, \ldots) , where $a_n = 0$ if a is in the left half of some interval $S_{n-1,k}$, and $a_n = 1$ if a is in the right half. We define $f: S \to [0,1]$ by

$$f(a) = \sum_{n=1}^{\infty} \frac{a_n}{2^n}.$$

A number a in [0,1] is called *simply normal in the scale of* 2 if its binary expansion $\sum_{1}^{\infty} (a_n/2^n)$ has the property that

$$n^{-1}\sum_{j=1}^n a_j \to \frac{1}{2}$$
 as $n \to \infty$.

It is known [1 and 3, p. 124] that Lebesgue-almost every point in [0,1] is simply normal in the scale of 2. We let

 $N = \{a \in S: f(a) \text{ is simply normal in the scale of } 2\},$

 β be a number in $(0,\frac{1}{2})$ which satisfies

$$(9) 1 - \beta < 2^{-1/\alpha}$$

and $M = \{a \in S: n^{-1} \sum_{1}^{r} a_j \to \beta, \text{ as } n \to \infty\}.$

Because $N \times N$ has Lebesgue measure 1,

(10)
$$\operatorname{capacity}(N \times N) > 0.$$

We claim that

(11)
$$\operatorname{capacity}(M \times M) > 0.$$

Assuming this is true, we proceed as follows. Because r_n are constant for $1 < \alpha < 2$ and r_n are increasing for $\alpha = 2$, by an appropriate scaling, we obtain, for any $a \in A$, 0 < r < 1,

(12)
$$\operatorname{capacity}(N \times N \cap B(a, r)) > cr,$$

(13)
$$\operatorname{capacity}(M \times M \cap B(a, r)) > cr.$$

Since capacity (A) > 0, we have $\omega(A, D) > 0$. Therefore, at least one of the three sets, $N \times N$, $M \times M$, or $A \setminus (N \times N \cup M \times M)$ has positive harmonic measure with respect to D.

Question. Which one?

We choose F to be any one of these three which has positive harmonic measure, and $E = A \setminus F$. Then (8) follows from (12) or (13).

To prove (11), we define a measure λ on [0, 1] by

(14)
$$\lambda(I) = \prod_{j=1}^{n} [(2\beta - 1)a_j + 1 - \beta]$$

if I is the closed interval

$$\left[\sum_{1}^{n}\frac{a_j}{2^j},\frac{1}{2^n}+\sum_{1}^{n}\frac{a_j}{2^j}\right],$$

for any n > 0 and $a_j = 0$ or 1, and let ν be the induced measure on S, $\nu(E) = \lambda(f(E))$.

It is clear that $\nu([0,1]) = 1$.

We need to show that

$$(15) \nu(M) = 1.$$

Let X_j be random variables on $([0,1], \lambda)$ so that $X_j(a) = a_j$. They are independent, uniformly bounded and $E(X_j) = \beta$. It is proved in [6] by using ideas from [5, p. 131] that

(16)
$$\sum_{j=1}^{n} X_{j} - n\beta = o(n^{2/3}), \qquad n \to \infty,$$

for λ -almost every a in [0,1]. This says that $\lambda(f(M)) = 1$ or $\nu(M) = 1$. Because of (14),

$$u imes
u \left(M imes M \cap B \left(P, \prod_{j=1}^n r_j
ight)
ight) \leq 4(1-eta)^{2n}$$

for any $P \in \mathbb{R}^3$. With the aid of (6) and (9) we conclude

$$\int_{M \times M} |P - Q|^{-1} d\nu \times \nu(Q)$$

$$\leq C \left[\frac{1}{1 - 2r_1} + \sum_{n=1}^{\infty} \frac{4}{\left(\prod_{j=1}^{n} r_j\right) (1 - 2r_{n+1})} (1 - \beta)^{2n} \right] < C_{\alpha, \beta} < +\infty$$

for any $P \in \mathbf{R}^3$. This, together with (15), shows that $M \times M$ has positive capacity. (10) can also be obtained by replacing β by $\frac{1}{2}$ in the proof above. This completes the case m=3. To arrive at the example for $m \geq 4$, we need only some routine changes.

An alternative way to show (11) is calculating the Hausdorff dimension of $M \times M$. This approach is particularly convenient for m = 2, when the logarithmic potential is harder to estimate.

When $m=2,\ 0<\alpha\leq 1$, we let

$$r_n = \left\{ egin{array}{ll} 2^{-1/lpha}, & 0 < lpha < 1, \ n/2(n+1), & lpha = 1, \end{array}
ight.$$

and construct the Cantor set S of dimension α, M and N, accordingly. Combining results in [1 and 6], we see that

$$\dim f(M) = \frac{\beta \log \beta + (1-\beta) \log (1-\beta)}{\log \frac{1}{2}}.$$

By translating coverings of M through f, we can show that

$$\dim M = \alpha [\beta \log \beta + (1 - \beta) \log (1 - \beta)] / \log \frac{1}{2} > 0.$$

Since f(N) are the simply normal numbers, dim f(N) = 1 and dim $N = \alpha$. Now let $A \equiv S$, and F be any one of the three sets N, M and $A \setminus (N \cup M)$ which has positive harmonic measure with respect to $D \equiv B(0,2) \setminus A$. The properties in the example are satisfied.

Question. We do not know whether A can be chosen in Example 3 to have $\dim A = m-2$. When $m=3, \ \alpha=1, \ \{r_n\}$ is not increasing, thus (12) does not follow from (10) automatically, and we do not even know whether r_n can be chosen so that capacity $(A \cap B(a,r)) > cr$ for all $a \in A, \ 0 < r < \frac{1}{4}$.

REMARK. When $m \geq 3$, the domain D in Example 3 can be made into a topological ball, by deleting a branching tree T, connecting B(0,m) to A, from $B(0,m)\backslash A$. This is possible because line segments have capacity zero when $m \geq 3$. The branches of T should be chosen carefully so that the ratio of capacity T0 to capacity T1 is sufficiently small.

REFERENCES

- A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system. (On sets of fractional dimensions. II), Math. Ann. 110 (1935), 321-330.
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, Berlin and New York, 1983.
- 3. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (5th ed.), Claredon, Oxford, 1979.
- D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147.
- 5. S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, PWN, Warsaw, 1935.
- R. Kaufman, A further example on scales of Hausdorff functions, J. London Math. Soc. (2) 8 (1974), 585–586.
- R. Kaufman and J.-M. Wu, Distortion of the boundary under conformal mapping, Michigan Math. J. 29 (1982), 267-280.
- B. Øksendal, Brownian motion and sets of harmonic measure zero, Pacific J. Math. 95 (1981), 193-204.
- 9. J.-M. Wu, On singularity of harmonic measure in space, Pacific J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, 1409 WEST GREEN STREET, URBANA, ILLINOIS 61801