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EXAMPLES ON HARMONIC MEASURE
AND NORMAL NUMBERS1

JANG-MEI WU

ABSTRACT. Suppose that F is a bounded set in Rm, m > 2, with positive

capacity. Add to F a disjoint set E so that E U F is closed, and let D =

Rm\(ËUF). Under what conditions on the added set E do we have harmonic

measure u(F, D) = 0? It turns out that besides the size of E near F, the

location of E relative to F also plays an important role. Our example, based

on normal numbers, stresses this fact.

Suppose that F is a bounded set in Rm, m > 2, with positive capacity. Add to

F a disjoint set E so that E U F is closed, and let D = Rm\(E U F). Under what

conditions on the added set E do we have harmonic measure w(F, D) = 0? It turns

out that besides the size of E near F, the location of E relative to F also plays an

important role. Our example, based on normal numbers, stresses this fact.

THEOREM. Let D be a bounded domain in Rm, m > 2, F be a subset of dD

with Am~1(F) = 0, and E = Rm\(D U F). Suppose that F lies also on some

quasi-smooth curve Y when m = 2, on some BMOi surface T when m > 3. And

suppose that at each a G F, 0 < r < |, there is a closed set T Ç EC\B(a, r) so that

(1) capacity(T) > capacity(ß(0,cxr))

and

(2) dist(T,F)>c2r;

also

(3) diam(T') < c2r/3    when m = 2,

where ci and c2 are constants in (0,1).  Then co(F,D) — 0.

By B(a, r) we mean {x £ Rm: \x — a\ < r}; and by capacity we mean (m — 2)-

capacity if m > 3, and logarithmic capacity if m = 2. See [2, l.XIII] for their

properties.

When m > 3, (1) is equivalent to

(1') capacity(T) > ccapacity B(0,r).

However, when m = 2, (1) is more restrictive than (1').

The surface T and dD are in general distinct; no smoothness condition is imposed

on dD. The problem is very different if dD is quasi-smooth or BMOi (see [4]).

When m > 3, topological properties of D are less important in studying u(F,D):
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there exist a topological ball D in R3, a set F lying on dD and on a plane, so that

dimCF) = 1, but u(F,D) > 0 [9].
In the theorem, we have three conditions on F: (a) it lies on a surface T with

minimum smoothness, (b) Rm\(D U F) is big near each point in F in the capacity

sense, and (c) Rm\(D U F) is untangled from F as in (2). T cannot be too general,

the theorem is not true if T is a quasi-circle (see [7]) and it is quite clear that (1)

in some sense is necessary. We shall show in Example 3 that if (a) and (b) are

satisfied, but the part of Rm\(D U F) that is big near F is not separated from F,

we may still have Am~1(F) = 0 but u(F) > 0.

The proof shows that the theorem still holds when F lies on a slightly more

general surface, namely,

(4) T is a topological sphere in Rm, whose interior Ui and exterior fi2

are both nontangentially accessible domains, and on T, Am^1(E) =

0 => u{E, Qi) = 0 for i = 1,2.

See [4] for the definitions of quasi-smooth curves (also called chord-arc), BMOi

surfaces and nontangentially accessible domains, and their relations.

This theorem is an improvement of the one in [9]. There Rm\D satisfies a

corkscrew condition; that is, T can be chosen to be a ball in Rm with

(5) radius T > cr.

It is also closely related to Theorem 2 in [8] and Theorem 3 in [7] when m = 2 and

D is simply-connected. However, the present theorem does not imply the results in

[7 or 8], because, for a set F lying on the boundary of a simply-connected domain,

we may not be able to find T so that the conditions (1) and (2) are both fulfilled.

To prove the theorem, we assume that T satisfies the more general condition (4)

and follows the steps in [9]. Because our assumption on the size of T is in terms

of capacity, which is weaker than (5), we need a replacement of (5) in terms of

harmonic measure, which is sufficient for the proof of the theorem. First, by the

countable subadditivity of capacity for m > 3 and by (3) for m — 2, we can find

C3,C4 depending on m,ci, and c2 only so that, for any a G F, 0 < r < t, there

exists P 6 B(a,r) with dist(P, F) > 3c3r and

capacity(ß(P, C3r) n T) > capacity(ß(a, C4r)).

Therefore, for \Q - P\ = 2c3r,

wQ(T n B(P,c3r), B(P, 3c3r)\(T n B{P,c3r))) > c5 > 0.

We remark that when m = 2, these statements do not follow from (1'). The rest

of the proof follows the similar lines as in [9].

Here are some applications.

EXAMPLE 1. In Rm, there exist disjoint sets E and F in 5(0, \/rn), whose union

E U F is closed, of zero Am_1-measure, and each of which has positive capacity.

However, w(E,D) > 0,u(F,D) = 0 where D = B(0,m)\(E U F). Moreover, for

any ß, a in [m — 2, m — 1], E and F can be chosen with dim E — ß and dim F = a;

in particular, it is possible to have dim E = m — 2, dim F = m — 1.

We give the construction for m — 3; some necessary changes are needed for other

m's. Given a sequence {rn}f 3 (0, \), we construct the corresponding Cantor set
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S: Let Sn,i = [0,1]; 5i,i and 5i,2 be the two closed intervals of length ri each, left

after the middle (1 —2ri) portion of [0,1] is removed. At the nth step, let {Sntk}2 = x

be the closed intervals of length fj" r, each, left after the middle (1 — 2r„) portion

of each {S^-i^}2"     is removed. Let

oo    2"

s=n u $».*■
i fc=i

Let {An,i}tlx = {Sn,kxSnJ: l<k,j< 2"} and A = f|~=1 (|jf=i An,i) the Cantor

set on [0,1] x [0,1]. We choose

(6)

1 fn + o
2

a = 1,
4 \n + 2,
4~l'a, 1< a < 2,

1    n

2n + l
a = 2.

Standard calculation shows that dim A = a, A2 (A) = 0 and l-capacity(A) =

ca > 0. We let F be A x {0} in R3.

Following the construction of A, we may construct a Cantor set Enj in Anj x

{Ilî ri) Ç R2 x {I1Î rj} £ R3 satisfying dim£n,; = ß, k2(EnA) = 0 and

n

(7) capacity(Enj) = cß x J|ry.
i

Let E = (XL, (Uf=i ^™,i). thus dim^ = /?> A2^) = 0 and capacity(£;) > 0. Let

D — B(0, m)\(EUF). Because of (7), we see that, at each a G F, for y/m []" fj <

r < \A^n"_  rji there exists some £nj so that

dist(Z?nj/, A) > cr    and   capacity(Enj) > cr.

From the theorem, it follows that u(F, D) = 0. Since

capacity^ U F) > 0,

we must have oj(E, D) > 0.

Example 2. Let

a = 0,

0 < a < 1,

o = l.

Let ai and a2 be numbers in [0,1], not both zero, and Sj, j = 1,2, be the Cantor

set on [0,1] corresponding to {rn} with a = aj. Clearly, dim5j = a.j. Let D =

R2\(Si x 52) be the domain in R2, whose boundary is the planar Cantor set Si x 52

of dimension ai + a2. Then any line parallel to either coordinate axis meets dD

on a set of zero harmonic measure and of dimension oi or a2. The example is

particularly interesting when ai — 0 (or a2 = 0).

Some complementary examples on domains whose boundaries consist of other

Cantor sets can be found in [8].
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The next example shows that condition (2)—ensuring that E and F are untan-

gled—is not superfluous.

The author thanks R. Kaufman for bringing the concept of normal numbers to

her attention.

EXAMPLE 3. In Rm, there exist disjoint sets E and F in B(0, y/m) n (itm_1 x

{0}), with the properties that each set has zero Am_1-measure, positive capacity,

that E U F is closed, and that, for any oeF,0<r<|,

(8) capacity(ß(a,r) n E) >  capacity B(0,cr).

However, w(F,D) > 0, where D = B(0,m)\(E U F). Moreover, for any a G

(m — 2, m — 1], we can choose E and F so that dim(E U F) — a.

We first consider the case m = 3 and 1 < a < 2, and let rn be as in (6), S and

A be the Cantor sets on [0,1] or on [0,1] x [0,1] as defined in Example 1, and let

D = £(0,3)\A. We identify R2 with R2 x {0}.
We represent a number a G S by (ai,a2,a3, ...), where an — 0 if a is in the

left half of some interval 5„_i k, and an = 1 if a is in the right half. We define

/: S -[0,1] by
OO

1

A number a in [0,1] is called simply normal in the scale of 2 if its binary expansion

]Ci°(a™/2") has the property that

n ^

n~l \   ay — -     as n — oo.

i=i

It is known [1 and 3, p. 124] that Lebesgue-almost every point in [0,1] is simply

normal in the scale of 2. We let

N = {a G S: f(a) is simply normal in the scale of 2},

ß be a number in (0, \ ) which satisfies

(9) l-ß<2~1/a

and M = {a e S: n_1 J^i aj — /3, as n — oo}.

Because N x N has Lebesgue measure 1,

(10) capacity (N x N) > 0.

We claim that

(11) capacity(M x M) > 0.

Assuming this is true, we proceed as follows. Because rn are constant for 1 < a < 2

and r„ are increasing for a = 2, by an appropriate scaling, we obtain, for any a G A,

0 < r < 1,

(12) capacity(iV x N n B(a, r)) > cr,

(13) capacity(M x M n ß(o, r)) > cr.
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Since capacity(A) > 0, we have uj(A, D) > 0. Therefore, at least one of the three

sets, N xN, M x M, or A\(N x NöM x M) has positive harmonic measure with

respect to D.

Question. Which one?

We choose F to be any one of these three which has positive harmonic measure,

and E = A\F. Then (8) follows from (12) or (13).

To prove (11), we define a measure A on [0,1] by

(14) X(I) = Yll(2ß-l)aJ + l-ß}
3=1

if / is the closed interval
'  n 1 n

2¿ ' 2n     ¿-^ V
.i i

for any n > 0 and Oj = 0 or 1, and let v be the induced measure on S, v(E)

\(f(E)).
It is clear that v([0,1]) — 1.

We need to show that

(15) v(M) = 1.

Let Xj be random variables on ([0,1], A) so that Xj(a) = aj. They are independent,

uniformly bounded and E(Xj) — ß. It is proved in [6] by using ideas from [5, p.

131] that

(16) YJX]-nß = o(n2'% n — oo,

for A-almost every a in [0,1]. This says that A(/(M)) = 1 or u(M) = 1.

Because of (14),

v x v   M x M n B IP, [] rA     < 4(1 - ß)2n

for any P G R3. With the aid of (6) and (9) we conclude

\P - Q\'x du x u(Q)

1 ^ 4

/ MxM

<C
l-2r - + Et-

i rf=i(n;=i^j(i-2r„+1)
(1-/3)

2n
< Ca,ß < +00

for any P G R3. This, together with (15), shows that MxM has positive capacity.

(10) can also be obtained by replacing ß by ^ in the proof above . This completes

the case m = 3. To arrive at the example for m > 4, we need only some routine

changes.

An alternative way to show (11) is calculating the Hausdorff dimension of MxM.

This approach is particularly convenient for m = 2, when the logarithmic potential

is harder to estimate.
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When m = 2, 0 < o < 1, we let

Í2-1A*, 0<Q<1,

Tn~\n/2(n+l),        a=l,

and construct the Cantor set S of dimension a, M and iV, accordingly. Combining

results in [1 and 6], we see that

tonfjM) = ß]°*ß+l1-®]o*l1-ß\

By translating coverings of M through /, we can show that

dim M = a[ß\ogß + (1 - ß) log(l - ß)}/ log | > 0.

Since f(N) are the simply normal numbers, dim/(TV) = 1 and dim N = a. Now

let A = S, and F be any one of the three sets N,M and A\(N U M) which has

positive harmonic measure with respect to D = B(0,2)\A. The properties in the

example are satisfied.

Question. We do not know whether A can be chosen in Example 3 to have

dim A — m — 2. When m = 3, a = 1, {rn} is not increasing, thus (12) does not

follow from (10) automatically, and we do not even know whether rn can be chosen

so that capacity(A n B(a, r)) > cr for all a G A, 0 < r < ~.

REMARK. When m > 3, the domain D in Example 3 can be made into a

topological ball, by deleting a branching tree T, connecting B(0, m) to A, from

B(0, m)\A. This is possible because line segments have capacity zero when m > 3.

The branches of T should be chosen carefully so that the ratio of capacity(T') to

capacity (A) is sufficiently small.
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