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ON THE ELLIPTIC EQUATION Dl[alJ(x)DJU} - k(x)U + K(x)Up = 0

FANG-HUA LIN

ABSTRACT. The problem of the existence and nonexistence of entire, posi-

tive solutions to the uniformly elliptic, semilinear equation £>¿[a¿j(x)DjU\ —

k(x)U + K(x)Up = 0 in Rn, where p > 1, is studied. A limiting case when

K(x) is negative and has quadratic decay at infinity is also treated.

I. Introduction. The problem of conformai deformation of metric with pre-

scibed scalar curvature for a class of simple Riemannian manifold leads to, naturally,

the study of the following more general uniformly elliptic, semilinear equation:

(1.1) LU-k(x)U + K(x)Up = 0   inR",

where n > 3, p > 1, and L = Dí[üíj(x)Dj( )], and the functions a^ = ay,-, for

i,j = 1,... , n, are measurable and satisfy the uniform ellipticity condition

(1.2) A"1^2 < aqizKitj < \\H\2

for all x, £ G Rn with A > 1 being a fixed constant.

The existence and nonexistence of positive solutions to (1.1) was studied exten-

sively in [N] for the special case that a¿y = <%, and some of the main results have

been extended to (1.1) by C. Kenig and W. M. Ni [KN1, KN2]. The main existence

result in [KN1] may be described roughly as follows: 7/0 < k(x) < c(l + |a;|)2+£,

and \K(x)\ < c(l + |i|)2+e, for some positive constants c,e, then (1.1) has infinitely

many bounded solutions in R" with positive lower bounds. It is also shown in [KN1]

and [N] that if K is negative and |7i(z)| > c(l + |x|)£_2 at oo for some c,e positive

constants, then (1.1) has no positive solutions in R" provided k(x) > 0. Thus

it remains an open question for the limiting case when K(x) is negative and has

quadratic decay at oo.

In this work, we settle this question. Our main result, which can be deduced

from Theorem 3.4 in §3, is the following

THEOREM. Ifk(x) > 0 and K(x) is bounded and satisfies K(x) < -c(l + |a;|)_2

for some constant c > 0, then (1.1) has no positive solution in R".

We also prove a slightly different version of the existence result without the

positivity hypothesis on k in §2. A few remarks and some generalizations are

discussed in §4.

The author thanks Professor W. M. Ni for several informative and suggestive

conversations, and Professor R. Hardt for his encouragement and support.

II. Existence results.  We first consider the linear equation

(2.1) Dl[alj(x)D3U]=f(x)    inR",

where (ai3) satisfies (1.2) and / G L¡£c(Rn).
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PROPOSITION 2.1. For any e G R, (2.1) has a unique solution U G CQ(R") n

Hloc(Kn) for which Yim\x\^00U(x) = e, provided that \f(x)\ < (1 + |x|2)_1u>(|a;|)

with J^° 7^1w(r) dr < oo.

PROOF. Let G(x,y) be the Green's function of operator L, L = D{[aijDj( )].

Then by the estimate 0 < G(x, y) < Ki\x-y\2~n where Kx = Kx(n, A), cf. [LSW],

we see that U(x) = e — jRn G(x, y)f(y) dy is the unique solution of (2.1), and that

lim^i^oo U(x) = e and that U G Ca(Rn) H TL^JR"), for some a > 0.    Q.E.D.

We also need the following result [N, Theorem 2.10]:

PROPOSITION 2.2. Suppose ip><p are respectively an entire supersolution and

subsolution of

(2.2) Di [Oij (x)D3 U} + f(x,U) = 0,

where (a¿j) os in (1.2) and f(x,y) is a locally Holder continuous function which

is locally lipschitz in y. Then there is an entire solution U of (2.2) such that

<p<U <tp in R".

Now we consider (1.1).

THEOREM 2.3.   Let w : R+ —» R+ be a locally bounded function with

/•oo

/     r~lw(r) dr = A < oo.
Ji

Then there exists a positive constant 6 = 9(X,n,A) such that if \K(x)\ <

Co(l + |x|)_2ti;(|x|) and \k(x)\ < 6(1 + |x|)~2w(|a:|), for some Co > 0 constant,

then (1.1) has a family of positive solutions in C7a(R")ni711oc(Rn). Moreover, each

of these tends to some positive limit at infinity.

PROOF. First we claim that there exists a #i > 0, such that

(i) the unique solution of Di[a,ij(x)DjUE] — C(l + |x|)~2u>(|x|) = 0 with

lim^i^oo U£(x) = e, which is guaranteed by Proposition 2.1, satisfies 0 < U£ < e for

any C G (O,0i) and e G (1/3,1/2),
(ii) the unique solution of Di[ai3(x)DjUe\ + C(l + |x|)~2u;(|a;|) = 0 with

limisi^oo U£(x) = s, which is guaranteed by Proposition 2.1, satisfies s < U£ < 1

for any C G (0,6>i) and e G (1/3,1/2).

These are easy consequences of the representation formulas for the solutions.

Here the constant f?i depends only on A, n and A.

Now we choose 6 = f?i/3. By changing the dependent variable if necessary, we

can, since p > 1, assume |7f(x)| < 0(1 + |x|)~2i(;(|x¡). Choosing C = 2r?i/3 in (i)

and (ii) above, we have, for any e G (1/3,1/2), functions 0 < Ue < U£ < 1 such

that
Di[aij{x)DjUe] - k(x)U£ + K(x)UE"

= -2Ö1tü(|a:|)/3(l + |x|)2 - k(x)U£ + K(x)U£"

< -2ôiw(|a;|)/3(l + |i|)2 + \K(x)\ + \k(x)\ < 0,

and, similarly, Di[ai:l{x)DjU£} - k(x)U£ + K(x)Up > 0.

Now applying Proposition 2.2 we find a solution U of (1.1) with 0 < U£ < U <

U£ < 1 and lim|lHoo U(x) = e.    Q.E.D.
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III. Nonexistence results. We again begin with (2.1). The following estimate

is of independent interest:

PROPOSITION 3.1.   Let U be an entire solution of (2.1) with (7(0) > 0, and let

M(R) = max|x|=ñ U(x).  Then, for all R > 0, we have

¡•2R/3
(3.0) M(R)>c(n,\) r~lw(r)dr

Jo

provided that f(x) > (l + |x|2)_1w(|x|) > 0. IfU is a positive solution on {x: \x\ >

-Rrj} for some Rq > 0, and the integral f^ r_1w(r)dr — oo, then (3.0) remains

true for all suitably large R.

PROOF. To show the first part of the proposition, we solve

Lí/ñ = / inBR = {xGRn: \x\ < R},

UR = M(R)    on dBR.

By the maximum principle and the representation formulas for UR we have that

M(R/2)=   max:U(x)
\x\=K/l

p

<   max   UR(x)=M(R)- GR(x,y) f(y)dy
\x\=R/2 J\y\<R

where |x| = R/2 and GR is the Green's function of L on BR. Thus,

M(R) - M(R/2) > c(n, A) f f(y) \x - y\2~n dy
J R/3<\y\<2R/3

/■2Ä/3

> c(n,A) / r_1w;(r)fir,

J R/3

and (3.0) follows.

Next we let U > 0 be a solution of (2.1) on R" - BRa, and consider the problem

LVR=f in BR-BRo,

VR = M(R)    for \x\ = Rq or 7c,

_
where M(R) = max{M(Ro), M(R)}. Then for R > ifo we have

U(x) < VR(x) = M(R) - f GRotR(x,y)f(y) dy,
JRo<\y\<R

where GRo<R is the Green's function of L on BR-BRo, x G BR-BRo. In particular,

since U > 0, we have

M(R)> [ GRo,R(x,y)f(y)dy
JRo<\y\<R

for all R > Ro and x G BR - BRo. Letting R —> oo, GRo¡R(x,y) converges

monotonely toGij0i00(x,î/) > c(n,X)\x-y\2~n. By the hypothesis f^ r~lw(r)dr =
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oo, we conclude that M(R) —♦ oo as R —> oo.   Thus we can assume, for some

constant Rx > Rq, that M(R) = M(R) for R>RX. Now,

M(R/2) =   max   U(x) <   max   VR(x)
V     '    ^        \x\ = R/2     V   ' ~ \x\ = R/2        K   '

r¿K/á cZtt/i

< M(R) - c(n, A) / r~lw(r) dr = M(R) - c(n, A) / r"1«;^) dr
JR/3 JR/3

for R > i?i, and this implies

c2R/3

M(R)>M(Ri)+c(n,X) r~lw(r)dr.    Q.E.D.
J Ri

LEMMA 3.2.   Let U be a positive supersolution of

(3.1) LU + K(x)Up = 0    ibR".

Then MJ + CiK(x)UP < 0 has a positive solution U provided K(x) > 0 and

K(x) £ 0 in R", where Cy = Ci(n, A), p > 1.

COROLLARY 3.3. A consequence of Lemma 3.2 is the following: If K(x) > 0

in R" (Rn/BR respectively), and Kp(r) > Crl for r large, where C > 0 constant,

I > (n — 2)(p — 1) — 2. Then (3.1) does noi possess any positive supersolution in

R" (R"/Bß respectively).

For the definition of 7ip(r) and the proof, see [N].

Proof of Lemma 3.2. For R g [l,oo), let

VR(x)= [   GR(x,y)K(y)Up(y)dy,
Jbr

where GR is the Green's function of L on the ball BR(0). By the maximal principle,

VR < U on BR. If we let GR be the Green's function of A on BR, then it is not

hard to see that there exists a constant C7i = Ci (n, A) such that

U(x) > VR(x) > VR(x) - Ci(n, A) / GR(x,y)K(y)Up(y) dy.
J D2R/3

So we have a family {VR} such that

(i) 0 <VR(x) < U(x) for x G 52ñ/3,

(ii) AVR = -CiKUp < -CiK(x)VPR on B2R/3,

(iii) for each Rq sufficiently large, there is a number e(ito) > 9 such that VR(x) >

e(Ro) for x G 5ñ0/2 and R > 2Rc,.

The last statement follows from K > 0, that 7Í ^ 0 in R", that f7(x) > 0 in R"

and that GR*(x,y) < GR»(x,y) whenever R' < R" and x,y G BRi.

Then there exists a sequence Rm —> oo, such that Vañm —> Fo in 771oC(R") and

in the appropriate local Holder norm. Thus Vq G 7711oc(R") n C7Q(R") and satisfies

(i) Vo(x) < U(x) on R",

(ii) VQ(x) > e(Ro) for^ G B^^,

(iii) AFo < -CiK(x)VVq, in fact, AV0 = -CiK(x)Up.    Q.E.D.
Now we treat the case 7i(x) < 0. Our main result is the following theorem.
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THEOREM 3.4. There is no positive subsolution to (3.1) provided K(x) <

—A(l + |x|)~2, for some constant A > 0.

In proving this theorem, it seems more convenient to consider the following

inequality:

((3.1)') LU>KUP   inR",

where K > A/(l + |x|2) and prove that (3.1)' has no entire positive solution. (Note

that we have changed the sign of K here.)

We first make a few observations.

(a) A differential inequality. If U > 0 is a solution of (3.1)', then JB ULU dx >

¡Br KUp+1 dx. This implies

/     U(aijDjU)uids> f   KUp+1dx+ [   aidD%UD3Udx
JdBr JBr JBT

and so

C0 f    U\DU\ds> f   KUp+1dx+ [   |77u|2dx,
JdBr JBT JBr

for some positive constant Co = Co(n, A). We integrate the above inequality from

r = 0 to r = R to find that

Coi   U\DU\dx> f    f   KUp+1dxdr+ f    [   \DU\2dxdr.
JBr Jo   JBr Jo   Jbx

(b) Moser 's subsolution estimate. If U > 0 satisfies LU > 0 in B4R, then

M(R)1 <C(n,\,l)¿     Uldx,
Jb2R

where I > 1, M(R) = sup|x|<fi t7(x), and

k uUx = vh\lB uldx-
J t>2R \      **i.\   J LS-iR

(c) Exponential growth estimate. Let U be a positive subsolution of (3.1)' in R".

Then there exists a, C two positive constants such that M(R) > exp(C*Ra).

PROOF. Let VR(x) = M(2R)-fB2R G2R(x,y)K(y)Up(y)dy. Then 0 < U < VR

on B2r. Thus

M(R/2)=    sup   U(x)
\x\<R/2

<' 1*1:sup   VR(x) = M(2R) - f     G2R (x, y) Up(y)K(y) dy
c|<ñ/2 Jb2r

for some x, |x| = R/2. Thus for some constant Co = C?0(n, A), we have

M(2R) > M(R/2) + Co Í       G2R (x, y) Up(y)K(y) dy
J B3R/2

f
> M(R/2) + CrjA ¿    Up(y) dy > M (R/2) + Ci(n, A, p, A)Mp(R/2).

Jbr
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Without loss of generality we assume 77(0) = 1. Thus, we have M(2R) >

(1 + C?i)M(7i/2), and M(R) > 1 for all R > 0. Hence, M(R) > C2Rai for some

ai > 0, C2 > 0.

Next we go back to the inequality M(2R) > M(R/2) + CiMp(R/2), and iterate

to obtain
M(4mRo) > CiMp(Am-1R) > ••• > C^Mp"l(R0),

7m = 1 + p + • ■ ■ + pm~l = (pm - l)/(p - 1). Hence,

logM(4mÄo) > pm[\ogM(R0) + (lm/pm)\ogCi}.

Taking Ro large enough so that logM(-ño) + ('ym/pr")logCi > 1, we find that
M(4mÄ0) > exp(pm) > exp[C*(Ä04m)a].     Q.E.D.

Proof of Theorem 3.4.  By (a),

[   U\DU\dx>C0    í    [   \DU\2dx+ f    f   KUp+1dxdr
J Br Jo      J Br Jo      J Br

Since p > 1, we may choose 1 < sq < 2 sufficiently close to 1 so that 2so/(2 — sq) <

p + 1. Thus,
30

f   USo\DU\So dxyCR-^30-^ ( f   U\DU\]
JBr \JBr /

1*1   (\DU\
JO      J BR

> CR-n{-a°-V
2 + KUp+1)dxdr\

>C0
Jo     J B

(\DU\2 + KUp+1)dxdr

for si  =  (1 + so)/2  >  1 and for i? large.    Here we have used the fact that

K(x) > A(l + |x|)_2 and fB   Up+1 dx has exponential growth. Since US°\DU\S° <

(so/2)\DU\2 + ((2 - so)/2)U2s°/(2-°°\

/     (|77f7|2-f-i/2s°/(2-s°)) dx>C7i    /     /   (|7>í/|2+7í7/P+1)cir      .
JBr   V ' \J0       J Br

Finally, we get

[   (\DU\2 + KUp+1)dx> [    (\DU\2 + U2sa/{2-So)) dx
JBr JBr   K '

>Ci    f    f  (\DU\2+KUp+1)dxdr
Jo   Jbt

for R large. This implies that /'(it) > Cif(R)Sl for R large, where

f(R)= f    f  (\DU\2 + KUp+1)dxdr;
J0        J BT

hence if we choose Rq a fixed large number, then

(f(Ro)1-81 - f(R)1-Sl)/(si - 1) > Ci(R - Rq)    for R > Rq.

As R —> oo, f(R) —► oo, a contradiction.    Q.E.D.
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IV. Final remarks, (i) When p > 1, the proof of Theorem 3.4 yields the

following result: If U > 0 satisfies LU > K(x)Up in R", where K(x) >

(1 + |x|)_2w;(|x|) > 0, with J^° r~1w(r) dr = oo, then U cannot be bounded above.

(ii) In case p = 1, (1.1) reduces to the linear equation

(4.1) LU + V(x)U = 0.

It is standard [KN1] to prove that if V(x) G Lfoc(Rn) with V < 0 on R" and

q > n/2, then (4.1) always admits entire positive solutions. This is Theorem 3.4 is

not true when p = 1.

We also notice that [B] there is no nontrivial solution U G Lpoc(Rn) to AÍ7 —

\U\p~lU = 0 in 77'(R") for p > 1.
(iii) It is easy to show that there exist two positive constants C"i = C7i(n, A),

C2 = C2(n, A) so that: If |V(x)| < Ci/(1 + |x|2), then (4.1) admits positive entire

solutions. If V(x) > C2/(l + |x|2), then (4.1) does not have any positive solution

on R" or even on a bounded ball.

(iv) The local existence and nonexistence of positive solutions of (1.1) still remain

an interesting question in general. We have learned in personal communication

with Dr. W. Y. Ding that, a simple choice of functions o¿y on the unit ball B, the

uniformly elliptic, semilinear equation

IU + £r(n+2)/(«-3) _ 0     xnB

u = o on as
may have a positive solution.

(v) In the case (al3(x)) is a symmetric, positive definite matrix with measurable

entries and of which the eigenvalues are of order of magnitude |x|a'2~") at infinity,

with —oo < a < 1, our results remain true with obvious modifications. More

precisely, we have the following

THEOREM 2.3'. Let w: R+ -> R+ be locally bounded with §™r~lw(r)dr =

A < oo. Then there exists a positive constant 0 — 6(A,L) such that if |7T(x)| <

C(l + |x|)a(2-")-2u;(|x|), for some C > 0 constant, and

\k(x)\<e(l + \x\)^2-^~2w(\x\),

then (1.1), with ai3 's above, has a family of positive solutions in CQ(R")n771|>c(R").

Moreover, each of these tends to some positive limit at infinity.

THEOREM 3.4'. There is no positive subsolution to (3.1), provided K(x) <

—C(\x\ + l)a(2_")~2, for some constant C > 0, where a{3 's is in this remark.

The proofs of the above theorems are similar to those which have been carried

out when L is the uniform elliptic operator. The estimates we needed are available

in [FKS] and [FJE].
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