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EXPLICIT EXAMPLES OF BLOCH FUNCTIONS
IN EVERY Hp SPACE, BUT NOT IN BMOA

FINBARR HOLLAND AND J. BRIAN TWOMEY

ABSTRACT. It is shown how to construct analytic functions, with nonnega-

tive Taylor coefficients, that belong to the intersection of the space of Bloch

functions and all the Hv spaces and yet do not have bounded mean oscillation.

1. Introduction. A function /, analytic on the open unit disc D, is said to

belong to the Bloch space B if

mo{(l-\z\2)\f'(z)\:zGD}<oc,

and to be in BMOA if it is in the Hardy space 772 and its radial limit function has

bounded mean oscillation on the unit circle.

Both B and BMOA are dual spaces of Banach spaces of analytic functions: B

is (isomorphic to) the dual of the space 7 of functions g analytic on D such that

//   \g'(z)\dxdy < oo,

while BMOA is (isomorphic to) the dual of the Hardy space H1.   The former

statement was established in [1], the latter in [5].

Evidently, 7 C 771 and, for p > 1, 77p C H1; the inclusions are continuous.

Hence, by duality, BMOAc B and BMOAc Hq, for all q > 1. Thus the contain-
ment relation

BMOAcßn{77p:p>0}

follows. The question arises: Is the inclusion strict?

Using arguments involving the existence of a universal covering map and sta-

bility properties [9] of BMOA, it was shown in [4] how to create functions in the

complement B n {Hp:p > 0}\BMOA. In the same paper, the authors called for

more explicit examples of such functions. The present note is a response to that

request.

Elsewhere [6], the need arose to exhibit non-BMOA functions with nonnegative

Taylor coefficients in BOH2. The technique we use here to construct such functions

in the smaller space B D {Hp:p > 0} is an elaboration of the one outlined in [6].

2. Criteria for membership of B, BMOA and 77p. Our method for con-

structing functions of the desired kind is based on criteria for membership of the

three spaces B, BMOA and Hp, which, for convenience, we recall here:
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Let an > 0, for n = 0,1,..., and f(z) = J2 an2™ (z €E D).   It is an easy

consequence of the definition that / G 77 if and only if

1   n

sup — y    kak < oo,

equivalently, if and only if

»^ n fc=i

2fc+i

sup y    a3 < oo.

k>°l?

The classical Hausdorff-Young theorem [7] tells us that / belongs to 77p, for a

fixed p > 2, if J2(an)q < oo, where q = p/(p— 1) is the conjugate of p. In particular,

then, / belongs to 77p for all p > 0 if the last displayed series is convergent for every

q > 1.
C. Fefferman has given a necessary and sufficient condition for an analytic func-

tion, having nonnegative Taylor coefficients, to belong to BMOA [2], and we exploit

that here. Proofs of this criterion can be found in [3, 6 and 8]. It goes as follows:

/ belongs to BMOA if and only if

oo    /n— 1

n>l

v. 2

sup X] ( Yl aJn+r ) < °°-
]■■= 1   \r=0

3. The construction. Let To = {0}. For k > 0, let m(k) denote the integer

part of 2v^-2v/(fc"1), and set Fk = {2* f j: j = 0,1,...,m{kj).

Let Tío = {1} and for k > 0 let Ek = {2k + j:j G IJÍ^O < i < k- 1}}.
Then Ek C [2fc,2fc+1), and n(k), the number of elements in Ek, is equal to 1 +

y~23Zi [m(7) + 1] and therefore satisfies the inequalities

2n/(*-i) < n(jfc) < k + 2V(k-i)    for fc = 1,2, ....

Define the sequence (an) as follows:

= sk = 2~^   úneEk, k = 0,l,..:i
= 0 if n£E = {J{Ei:i>0}.

Claim. The function / given by

/(.) = X>„," = 5>5>"
fc>0       nEEk

lies outside BMOA, but inside 77 and H{77p:p > 0}.

First, / G 77. This follows from the fact that n(k), the number of elements of

E in any interval of the form [2k,2k+1), is at most 3 • 2^ and an = 2~^k on Ek.

Thus
2fc+1-l

X^   an < 2-^n(k) < 3    for* = 0,1» ••••
n=2k
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Second, / G 77p for ail p > 0. For, if q > 1, then

00/ \ oo

£k)9 = E  E m9 = E(£*)'n(*)
k=0  \n£Ek J        k=0

oo

<3-^2-^-1)^<oo.

fc=0

Third, / ^ BMOA. To see this, note that the number of elements in E that

belong to any interval of the form [2s+m, 2s+m + 2m — 1] is at least equal to n(m).

Hence, with n = 2m,

2 /     , \  2
oo     /2» + m+2m-l

> E     E   *
j'=l   y    r=jn J s=0  \      r=23 + m

oo

.2
> ^(n(m)£s+m)2 = (n(m))2 £ e2

5—0 3=m

/»OO

> (n(m))2 /     2-2^(ii > 22V("l-1)v^2-2^

as m tends to infinity.

Thus the function / has all the desired properties.
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