
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 95. Number 2. October 1985

ON THE CLASSES ABV AND V[v]

M. AVDISPAHIC1

Abstract. We prove inclusion relations between Waterman's and Chanturiya's

classes and point to some corollaries thereof. The situation which occurs in connec-

tion with Zygmund's theorem for Waterman's classes is clarified.

1. Introduction. Let/be a real function of period 277. Let A denote a nondecreas-

ing sequence of positive numbers Xn such that El/\„ diverges, {/„} a sequence of

nonoverlapping intervals In = [an, bn] c [0, 2tt] and let /(/„) = f{b„) -f(a„). In

[17] D. Waterman has introduced the following concept of generalized bounded

variation.

Definition 1. A function/is said to be of A-bounded variation (/ g ABV) if for

every choice of {In} we have

00

£   \f(l„)\/\„ < 00.
71=1

The supremum of these sums is called the A-variation of/. For A = {n} we say that

/ is of harmonic bounded variation ( / g HBV).

This notion has its genesis in the joint work of C. Goffman and D. Waterman [10]

on everywhere convergence of Fourier series for every change of variable. Relations

to other generalizations of bounded variation, properties of functions of the class

A BV (and those of A-variation function) as well as the convergence and summabil-

ity properties of their Fourier series have been investigated in [12, 13, 16-20].

S. Perlman [12] has proved that the intersection of ABVs, taken over all sequences

A, is the class BV of functions of bounded variation and the union of ABVs is the

class of regulated functions. With respect to the problems of convergence of Fourier

series, the class HBV appears to be of special importance [17, 20]. Perhaps the

highest achievement are the definitive results for localization by square and rectan-

gular sums for the Fourier series of functions of two variables obtained in [11], after

a suitable definition of ABV in this case.

On the other hand, for everywhere bounded 27r-periodic functions, Z. A. Chan-

turiya [3] has introduced the concept of the modulus of variation.
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Definition 2. The modulus of variation of a function/is the function vf(n) with

domain the positive integers, defined by

"/(«) - sup I \f(lk)\
n„ a = i

where IT.,, is an arbitrary system of n disjoint intervals Ik c (0, 2tt).

The modulus of variation of any function is nondecreasing and upwards convex.

Functions of an integral argument with such properties are said to be moduli of

variation. If the modulus of variation v(n) is given, then V[v] denotes the class of

functions for which vAn) = 0(v(n)) when n —> oo.

By these means, in [3-8] Chanturiya has investigated uniform and absolute

convergence of Fourier series, the latter in regard to the possibility of extension of

the Zygmund and Bochkarev theorems [21, p. 241; 2].

The purpose of this note is to contribute to unifying results.

2. Results. In what follows we suppose Xn /" oo, since it is the case of interest.

Theorem 1. ABV c K[«/(I^=11/X,)].

Proof. Let us take an arbitrary /g ABV and fix it. From the definition of

A-bounded variation follows the existence of the constant M such that for any

system {Ik} of n (n = 1,2,...) disjoint subintervals of the interval (0,27r) we have

\f(ii)\Ai+\f(i2)\A2+ ■•■+I/(OI/a„<m

l/(/l)lA2 + |/(/2)|/A3 +    • • •  + l/UJl/Ax  < M

|/(A)|/A„ + |/(/2)|/Ai +   ■ • • + ¡/(/„)|/A„-i < M.

By summation we get

(¿l/A^IJ/UJlj^M

and the conclusion of the theorem follows.

By [4, Theorem 1], for any bounded function/,

ux(8,f)= 0{Svf([l/8]))        (5^0+),

where ux(8, f) is the integral modulus of continuity of / and [I/o] is the largest

integer less than or equal to I/o. From this and Theorem 1, we obtain

Corollary ([14, Theorem 1; 16, Theorem 2]). Forf g ABV,

/     [i/s]        \

Ux(8,f) = 0 1/ £ 1/X,
\     <-i /

and, therefore the Fourier coefficients of f are 0(l/£"_il/A,).
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Theorem 2. ABV contains every class V[v\ such that the condition

£ A{\/\k)v(k) < oo
A = l

is satisfied, where Aak = ak — ak+x.

Proof.  Let  {Ik}, k = l,...,n, be an arbitrary collection of nonoverlapping

intervals, Ik c [0,277]. By partial summation we obtain

¿ I/(4)I/a, = "e A(i/A,) ¿ |/(7)l+ Va,,! 1/(7)1
k=\ k=ï i-I ;=1

<IA(1/À>(A) + K»)A
fc=l

and f(h)/X» ^ E*_„A(1/XXA:).
Theorems 1 and 2 imply

Theorem 3. (i) If p > 1 andkA(l/\k) = 0(1), then
■

--„   c ABV;
a:;'=>i/A,n

(ii)    K[«a] c {«^}BV c  V[nß]   for   0 < a < ß < 1,    V[n/lnpn] C HBV c

F[«/ln «];

(iii) ABV contains all continuous functions f with modulus of continuity satisfying the

condition

00

Z Hl/\k)ko(l/k) < 00;
fc-1

(iv) Lip a c { nß }BV for a > 1 — ß. HBV contains every Lipschitz class.

Proof, (i) Let us denote uk = kA(l/\k), S„ = L"k=xuk. By [1, Theorem 2, p. 21

(English transi., p. 6)], Sn -> 00 (« -» 00). Hence

/V ^    uk

(Ef-il/A,-) * = 1  û*/V = l

[1, p. 905, Corollary to Theorem 1]. The conclusion follows then by Theorem 2.

(ii) Immediately from (i) and Theorem 1. For V[na] it is enough to take

p = (1 - a)/(l -ß) > 1.

(iii) Follows from Theorem 2 and the fact that *y(A:) = 0(ku{l/k, /)) [3,

Theorem 4].

(iv) Immediately from (iii).

3. Comments. (1) As an example of an application of A-bounded variation to

absolute convergence of Fourier series, in the final section of [17] D. Waterman has

generalized the theorem of Zygmund [21, p. 241]. As the reviewer has already

remarked, this generalization loses its worth if \n > nl/2. The same is true for a
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recent theorem of S. Wang [16, Theorem 7]. However, in case («°}BV, a < 1/2, a

better result is possible. (See [16, Theorem 8]. The proof follows the line of the proof

of Theorem 2 in [4] and the result is a consequence of that theorem, in view of our

Theorem 1. As the matter of fact, both are equivalent, by Theorem 3(h).) S. Wang

remarks that no matter how the hypothesis /g {«^}BV may be fulfilled with

ß > 1/2, the condition/g {«^}BV cannot guarantee the absolute convergence of

the Fourier series of / g Lip a, if o < 1/2. (If a > 1/2 we have absolute conver-

gence by the theorem of Bernstein, no other hypothesis being needed. See [21, p.

241].) The situation is the same with Chanturiya's classes V[nß], ß > 1/2. We

provide a rather obvious reason. If Vp denotes Wiener's class of p-bounded variation

[1, p. 287], then Lip 1/2 c V2 is immediate and V2 c V[n1/2] follows by the Holder

inequality. Therefore, {nß}BV n Lip a zzi Lip 1/2 for a < 1/2 < ß and Lip 1/2, as

is well known, contains a function whose Fourier series does not converge abso-

lutely. More generally, given a modulus of continuity co(5), if we denote by Ha the

class of functions/G C(0,277) with co(ô,/) = 0(u(8)) when 8 —> 0, we see from

Theorem 3(iii) that (n^)BV contains every class //" with E^=1«~^w(l/w) < oo. If

£^=1«_1/2io(V") = oo, then within the class Hu n V[na], a > 1/2, there neces-

sarily exists a function whose Fourier series is not absolutely convergent [6, p. 238].

The following extension by Chanturiya of the theorems of Zygmund and Bochkarev

may be viewed as final in a certain sense.

Theorem A [7, Theorem 3]. For all Fourier series of class Hu n F[na], 0 < a <

1/2, to be absolutely convergent, it is necessary and sufficient that

00

¿ lA{co(l/«)}(1-2a)/2<1-a,< oo.

n = l

(2) The fact that {«"}BV contains Wiener's class V (and hence Lipl/p) for

a > 1 — 1/p may be deduced also from Waterman's considerations of the relation-

ships between 0-bounded and A-bounded variation, in [18]. According to what is

said in (1), no better extension of Zygmund's theorem for those classes than this

given by Theorem A is possible. (Compare this to [15, Theorem 1]. See also [4,

Theorem 3 and 15, Theorem 2].)

(3) In view of S. Perlman's result mentioned in the introduction, the condition

T.'k = iPk = o(\n n), where pk is the absolute value of the kth Fourier coefficient, is

sufficient for the continuity of function/g ABV (except for the removable discon-

tinuities) by the well-known theorem of Lukâcs [21, p. 60]. In the case («a}BV,

a < 1/2, the necessity can also be shown, in just the same way as Theorem 2 in [4] is

proved. For F[«a], a > 1/2, this is no longer true as the Hardy-Littlewood's

example

00

£ >?-y"lnV"-v g Lip 1/2

11 = 1

shows. Thus we get an extension of the theorem of N. Wiener [1, pp. 205-208; 21,

p. 40]. See [8 and 9] for somewhat more general statements.
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(4) Finally, it is also interesting to compare conditions proposed by Chanturiya

and Waterman so that Fourier series of all continuous functions of a certain class

converge uniformly. Actually the result in [17] includes the corresponding one in [5],

by our second theorem.
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