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HOLOMORPHIC quasiregular mappings

E. A. POLETSKY

Abstract. Holomorphic quasiregular mappings in bounded domains in C" are

studied. It is shown that the growth of the Jacobian of these mappings depends on

the behavior of the boundary of a domain. In particular, the Jacobian is bounded

when the boundary is smooth. Some applications to the theory of quasiregular

mappings between Hermitian manifolds are given.

Introduction. Quasiregular mappings generalize analytic functions on the complex

plane to spaces of higher dimension. The definition of quasiregular mappings is

related to the concept of conformality, while holomorphic mappings are defined via

the Cauchy-Riemann equations.

Both classes of mappings are rich and have a well-developed theory. But it was

noted in [1] and proved in [2] in a more general situation that if a mapping /:

C" -+ C" is simultaneously holomorphic and quasiregular then it is affine. Hence,

these notions generalize the concept of analytic functions in different directions. In

our paper we support this point of view, proving that the class of holomorphic

quasiregular mappings in domains of C", n > 2, is very rigid. In particular, these

mappings are Lipschitz in domains with a smooth boundary.

The author's interest in this research was aroused after reading [3], where such

mappings were used to obtain sharper results in the theory of equidistributions of

values, and [4], where it was proposed to study these mappings for such purposes.

We show here that in some cases this class is trivial.

Definitions. Let D be a domain in C", n 5= 2, and let B(z, r) be the ball of radius r

with center z, p(A, B) the Euclidean distance between sets A and B. If z =

(z,, z2>.. . ,z„) is a point of C", then 'z = (0, z2,...,z„), ||z||2 = E|zy|2 and ex =

(1,0,...,0). For any two real continuous nondecreasing functions (px and rp2 on R +

and a g R+ we define a set Ax(<p2, a) of points z = tex +'z such that 0 < t < a,

\\'z\\ < <p2(t) and a domain A(<px, <p2, a) consisting of all points w G C" such that

\\w — z\\ < <px(t) for some z g Ax(<p2, a), z = tex + 'z.

Let N be the complex hyperplane {z, = 0}.

We shall say that a mapping/: D -* C" is AT-quasiregular if/ G Cl(D) and

(1) ||/'(z)||<A'|det/'(z)|1/",        K>\,

where/'(2) is the derivative of/at the point z. Let 7(z) = det f'(z).
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Basic lemmas.

Lemma 1. Let f: A(cpx, q>2, a) -* C" be a nonconstant holomorphic quasiregular

mapping. Then for any z g Ax(<p2, a) such that z = tex +'z,

J(z)\<\bij(ae1+'z)\+cf'-^r,
Jt  <Pi(t)

In

where C depends only on K and n.

Proof. It is well known [2] that, for a holomorphic quasiregular mapping /,

J(z) = det f'(z) i= 0. Since the domain A = A{<px,<p2, a) is simply connected we

can define a function g(z) = J1/n(z) in A and holomorphic functions

o>kj = z¡^/g(z)

where fk is the kih coordinate of/.

By (1) and Hadamard's inequality, it follows for the matrix ß = (<¿k ) that

(2) detß = 1    and    1 <||ß||< K.

Hence, \ak,\ «S Kin A.

We introduce the bounded holomorphic 1-forms uk = Y."=xukjdzJ. Then dfk =

guk and dg A uk + gduk = 0 or, equivalently

(3) ding A uk = -dwk.

If we take the values of both sides of (3) on constant vector fields x(z) = ex and

Y(z) = v g N, where || v|| = 1, then we obtain that

Ml ain2     (y\     ai°g.., lYi     d"kiX)      dUkiY)

For a point w = re, +'w, \\'w\\ < <p2(r) it follows that the ball B(w, <p,(t)) c A

and, since |w¿(A)| and Iw^y)! are less than or equal to À', by Cauchy's inequality,

we have

dvk(x)

dY

Therefore, at a point w,

(5)

(w)
K

<Pi(t)'

dak(Y)

dx
(w)

K

<Pi(t) '

aing     , 3 In g     .    ,
°>k(Y) -^zvrO}k(X)dX dY

2K

<Pi(t)"

Since the vector u = (ù>x(Y),...,un(Y)) is equal to ßT and v = (ux(X),...,un(X))

is equal to &X, then the inequality (5) yields

II2

(6)
, cUng Y_dln_g

dx Y      dY x
4K2n

Let A, «: A2 < ■ ■ ■ < A„ be the eigenvalues of ß*ß. By (2), det ß*ß = nAt = l,

and A„ = ||ß*ß|| < K2. Hence,

(Qx, Qx) = (x, ß*ßx) > Ailloli2 ̂Wxf/K*"-"
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and

Q[^1Y.^ÄX
3A 37

9 In g v     ding

dY   '3A-
Y - /K

2(n-l)

3 In g

dX
+

9 In g

dY /K
2(«-l)

Using the upper estimation (6) for the left side of the last inequality, we see that

(7)
9 In g

dX

2K"nl/2

<Pi(t)

9 In g

dY

2K"nl/2

<Pi(T)

We consider a segment / = {w: w = rex +'z, t < t < a, \\'z\\ < cp2(t)}. Since the

function <p2 is nondecreasing, then / C ^41(<p2, a) and inequalities (7) hold for any

point w G /. Therefore,

|ln/(z) - \nj(aex +'z)\= n I
9 In g

<Cf^LJt   <Pi(t )

and

UnJ(z)\^\\nj(aex +'z)\+ cj
*     dr

t    <P,(t)

Lemma 1 is proved.

The next lemma is trivial.

Lemma 2. Suppose that hÁt),j = 1,...,N, are smooth complex-valued functions on

an interval I = [0,1] such that, at each point t, \hJ(t)\ > a > 0 for some index j. Then

there is a piecewise-smooth function h, \h\ > a, and h(t) = \h Ât)\ for some index j, and

\h\ is a continuous function.

Now we can prove a basic

Lemma 3. Let f: A((px, <p2, a) —* C" be a holomorphic quasiregular mapping. Then

for any z = tex, 0 < t < a,

|ln|y(z)||< Cx+\\n\j(aex)\

, r f  \MJ{aex)\\ J f     dr r"     ds

Jt      «Pil1") Jt   qp2(T)    Jr  <pAs)

where C,-, ; = 1,... ,4, depend only on a, <px(a), K and n.

Proof. As in the proof of Lemma 1, we consider constant vector fields X and Y.

Let w = rex and

Ar = (z: z = rex + ¿"7,0 < t < a, |£| < <p2(r)}.

The set AT is contained in Ax, and if zx = Tex + f Y g At, then, by Lemma 1,

In g(zx)\ < |ln g(aex + SY)\ + C      —- - *(f, t).
-'t      0D,    .Ï 1T tPl(s)
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Therefore, by Cauchy's inequality and (7) it follows that

9 In g

dY
(w) ^ÄO + c

<P2(t)        <px(a)
*i(t)

and \dwk(X)/dY\ < K/q>2(r).

The last inequalities, together with (4), imply that

9 In g

or, equivalently,

(8)

i(Y) +
dwk(Y)

dX
(w)^K^(r) +

K

<P2(T)
4>3(r)

3 ln(gwk(Y))

dX K(nr
ifwk(Y) + 0.

Since ||ßy|| $= Kl~", then at any point w = re,, for some A:,

* > \wây)\ > Q = 2-1«-1/2/:1-".

Hence, there is a function /i, \h\ > C5, defined by Lemma 2, such that an inequality

|3 \n(gh)/dX\ < ^3(t)/C5 holds for t g [í, a] except at a finite number of points.

But

3 In gh

dX

91n]g/.|

3A-

and, since \gh\ is a continuous function,

|ln|g/i(aei)| - \n\gh(z)\ | < Çf1 f *3(t) ¿t.
■'z

Using the inequality |/i| > C5 and the expression for \p3, we obtain

|ln|g(z)||<|ln|g(ae1)||+ C[

,f \ln\g(aex)\\ + C;+c2'   ' iov y;—-dr + c
J, <p2(T)

where C/ depend only on q>x(a), a, K and «.

Lemma 3 is proved.

•f-fr/J,    œ,   t   't

"      as

1    <P2(t) ¿    <p2(j)

Holomorphic quasiregular mappings in C". Let SI^, <p2, a) be the set of all

domains which can be obtained from A(<px, <p2, a) by complex motions. If G is such

a domain, we shall denote by TG a complex motion, transforming A(<px, <p2, a) onto

G. A domain DcC" has type (<p,, <p2, b, N) if for any point z g D there are

domains G¿ c Z), Gk& 2I(<Pi, <p2, a), 1 < k < M < N, and real numbers <Ä, 0 < tk

< a, such that

(1) TCi{txex) = z;

(2)rc,(<A)r rCl .(aej), 2 < A: < M;

(3)p(Tc (aei),3Z>0>/3.
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Theorem 1. If a domain D c C" has type (<pl5 tp2, b, N) and f is a holomorphic

quasiregular mapping on D, then

(9) \ln\J(z)\\^pJf^z_,    f-^f*\
\Jtk    <P2(T) Jh    Ç>2(t)'t     <PlU)/

where PN is a polynomial with coefficients, depending only on K, n, N, cpx(a) and

C = sup{|ln|/(w)||: p(w, 3D) > b).

For a proof of Theorem 1 we apply Lemma 3 N.

Corollary 1. If a domain DcC" has type (cta>, cta\ b, N) where a2 < 1 and

ax + a2 < 2, then for any holomorphic quasiregular mapping f on D, \\f'\\ is bounded.

Corollary 1 follows from the finiteness of all integrals in the right side of (9).

Corollary 2. If a domain D c C" has a boundary of class C2, then for any

holomorphic quasiregular mappingf on D, \\f'\\ is bounded.

It is easy to see that such a domain has type (ct, ctl/2, b,l) and, therefore, our

statement is a consequence of Corollary 1.

Corollary 3. Let U = (z g C: |z,| < 1} be apolydisk, E = {z g U: z¡ = 0, i =

l,...,k). Then any holomorphic quasiregular mapping, defined on U\E, extends

holomorphically to U.

If Ur = {z G C": |z,| < 1 — r}, then for any point z g U2r we can find a domain

G g 2I(í, r, r), G c Ur, such that z = Tc(\zx\ex). Hence, by Lemma 3, it follows that

J(z) and ||/'|| are bounded in U2r\E and / extends holomorphically on E C\ U2r.

Since it holds for all such r, we proved the corollary.

Example 1. Let D = {x g C2: K1 < \zx\/\z2\ < K, |z,| < 1} and/= (zf, z2").

It is easy to see that D has type (ct, ct, b, 2), f is holomorphic and quasiregular, but

J(z) = n2(z, z2)"<,! + 1) is unbounded. This example shows that our estimates in

Corollary 1 are best possible.

Example 2. One might hope that there are nontrivial estimates for higher

derivatives of a holomorphic quasiregular mapping. The next example shows that

this hope is in vain.

Let D = j5(0, 1) c C2 and/= (z, + (zx - l)3/2/3, z2). By a direct calculation it

is easy to check that/(z) > 0,25, ||/'|| < 5. Hence,/is quasiregular but the second

derivative of/is unbounded.

Holomorphic quasiregular mappings between manifolds. A holomorphic mapping

f:(M,g)^>(N,h)oî two Hermitian manifolds M and N of the same dimension

with Hermitian metrics g and h is called quasiregular if its derivative / ' satisfies an

inequality (1) at any point w g M. In this case, we must calculate ||/'|| and det/'

with respect to the metrics g and /¡.Two metrics g, and g2 on M are quasiconfor-

mally equivalent if the identity mapping /: (M, gx) -» (M, g2) is quasiregular. In

this case, if a mapping/: (M, gx) -> (N, h) is quasiregular, then/: (M, g2) —> (N, h)

is quasiregular too.
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Theorem 2. Let A be a compact complex Hermitian manifold with metric g and let B

be its analytic subvariety. Then any quasiregular holomorphic mapping f: (A\B, g) —»

C " is constant.

Proof. Let Bx be the set of singular points of B. It is well known that

dim Bx < dim B. We choose new coordinates zx,... ,zn in some neighborhood V of a

point z g B\BX such that fin V = {w G V: w,■ = 0, / = 1,..., k}. The mapping /

is quasiregular with respect to the Euclidean metric on V and, hence, by Corollary 3,

extends holomorphically to B Pi V. Since z is any point of B\BX, f extends to

B\BX and, therefore, can be defined on A \Bx. Repeating this procedure if

necessary, we can extend /to A. But A is compact and, hence,/is constant.

Theorem 3. Let B be a subvariety of C,n > 1. Then any quasiregular holomorphic

mapping f: C" \ B -* C" is affine.

Proof. As in the proof of Theorem 2,/extends to C" and our theorem follows by

a result in [1, 2] that any quasiregular holomorphic mapping/: C" -» C" is affine.

The next theorem gives an answer to Problem 14 in [3].

Theorem 4. Let CP" be the complex projective space with Fubini-Study metric.

Then any holomorphic quasiregular mapping f: C" -» CP" is constant.

Proof. Let g be a Fubini-Study metric, <p the fundamental 2-form and p its Ricci

form. In local coordinates, p = z'33 log G where G is the determinant of the matrix,

corresponding to the quadratic form g. It can be checked by a straightforward

calculation that for any holomorphic vector field X the form

ß = (//2)33 log </>(*, iX) - p/2n

is positive.

We shall denote by an asterisk the pull-back by / of a corresponding object (and

suppose that / is nonconstant). Then the form

ß, = (i/2)dd\og<p*(X,iX) - idd\ogG*/2n

is positive too, and this means that the function

,    .   .      ,     <b*(X,iX),   ,
/zy(z) = log '        {z)

(G*) '

is plurisubharmonic. By the quasiregularity of/, it follows that

K-l\\X\\2 -(G*)l/n < <b*(X, iX) < K\\X\\2(G*)1/n.

Hence, for any constant vector field A on C, the function hx is constant, because

any bounded plurisubharmonic function in C" is constant, and this means that the

form <bx = <¡>*(G*)~l/" has constant coefficients. But g is a Kaehler metric. There-

fore, d<p = d<p* = 0 and

d<bx = <b* A d(G*)~l/" = 0.

Since <p* is positive, dG * = 0 and G * = const which contradicts the positiveness of

the Ricci form.

The theorem is proved.
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