PERTURBATIONS AND GROUND STATES OF C*-DYNAMICAL SYSTEMS

HIDEKI KUROSE

ABSTRACT. In this paper we show that if a C*-dynamical system has an irreducible covariant representation, every relatively bounded *-derivation for its generator is also implemented by a relatively bounded selfadjoint operator for that associated with the dynamics. As its application, we assert that the existence of ground states of a C*-dynamical system is stable under sufficiently small perturbations.

 C^* -dynamical systems have been studied as a mathematical formulation for quantum mechanics, in particular, quantum statistical mechanics with time evolution. One of the most interesting problems is that concerned with perturbations. Let (A, α, \mathbf{R}) be a C^* -dynamical system, δ_{α} be its (infinitesimal) generator, and δ be another *-derivation in A with the domain $\mathcal{D}(\delta) = \mathcal{D}(\delta_{\alpha})$. Then it follows from Longo [9] that δ is relatively bounded for δ_{α} , that is, there are nonnegative constants c and d such that $\|\delta(x)\| \le c\|x\| + d\|\delta_{\alpha}(x)\|$ for all x in $\mathcal{D}(\delta_{\alpha})$. Furthermore, Batty [2] showed that if d < 1, $\delta_{\beta} = \delta_{\alpha} + \delta$ generates a C^* -dynamics (A, β, \mathbf{R}) , which is said to be small perturbation for α . In the special case that d = 0, the dynamics β is said to be bounded perturbation for α .

Under the above results, we can discuss the stability of physical properties for the initial dynamics under perturbations. For example, it is well known that the existence of KMS-states and ground states is stable under bounded perturbations [1, 6 and 11], and Batty [3] showed that the stability of ground states also holds for type-I C*-dynamical systems and its small perturbations.

In this article we first discuss the covariance of a *-derivation δ in A with $\mathcal{D}(\delta) = \mathcal{D}(\delta_{\alpha})$ in irreducible α -covariant representations and show that the relative boundedness of δ for δ_{α} automatically leads that of their implementing selfadjoint operators. As its corollary, we assert that the existence of ground states is stable under sufficiently small perturbations. Our discussions heavily depend on a recent work of Kishimoto [8]. The author would like to thank Professor Kishimoto for fruitful discussions with him and helpful suggestions.

We begin by stating the following theorem.

THEOREM 1. Let (A, α, \mathbf{R}) be a C^* -dynamical system with a generator δ_{α} , let ψ be an α -invariant pure state of A, and let $(\pi, \mathcal{H}, \xi, H)$ be the G.N.S. α -covariant representation for ψ such that $iH\pi(a)\xi = \pi(\delta_{\alpha}(a))\xi$. Consider a^* -derivation δ with the domain

Received by the editors July 27, 1984 and, in revised form, October 29, 1984. 1980 *Mathematics Subject Classification*. Primary 46L05; Secondary 46L55.

Key words and phrases. C*-dynamical system, ground state, *-derivation, perturbation.

 $\mathcal{D}(\delta) = \mathcal{D}(\delta_{\alpha})$. Then there exists a selfadjoint element k in A such that $\psi \circ (\delta + \operatorname{Ad} ik) = 0$ and we can find a selfadjoint operator K in \mathcal{H} satisfying

- (i) $\pi(\delta(a)) = [iK, \pi(a)]$ for all $a \in \mathcal{D}(\delta_{\alpha})$,
- (ii) $\mathcal{D}(K) \supset \mathcal{D}(H)$, and
- (iii) K is relatively bounded for H, that is,

$$||K\eta|| \le c_1 ||\eta|| + c_2 ||H\eta||$$
 for all $\eta \in \mathcal{D}(H)$,

where c_1 and c_2 are nonnegative constants that do not depend on η . Furthermore, if δ is a generator, we have $\mathcal{D}(K) = \mathcal{D}(H)$.

PROOF. We first note that H is defined by $iH\pi(a)\xi = \pi(\delta_{\alpha}(a))\xi$ for $a \in \mathcal{D}(\delta_{\alpha})$ and satisfies $(1 \pm iH)\pi(\mathcal{D}(\delta_{\alpha}))\xi = \pi((1 \pm \delta_{\alpha})\mathcal{D}(\delta_{\alpha}))\xi = \pi(A)\xi = \mathcal{H}$, so that H is a selfadjoint operator in \mathcal{H} with the domain $\mathcal{D}(H) = \pi(\mathcal{D}(\delta_{\alpha}))\xi$.

Let $\bar{\alpha}$ be a σ -weakly continuous one-parameter group of *-automorphisms of $M=\mathcal{B}(\mathcal{H})$ defined by $\bar{\alpha}(x)=e^{itH}xe^{-itH}$, then $\Delta_{\bar{\alpha}}=\operatorname{Ad}iH$ is its generator. We denote by $M^{\bar{\alpha}}(\Omega)$ (resp. $A^{\alpha}(\Omega)$) a spectral subspace for $\bar{\alpha}$ (resp. α) associated with a set $\Omega\subset \hat{\mathbf{R}}=\mathbf{R}$ and set $M_F^{\bar{\alpha}}=\bigcup M^{\bar{\alpha}}(\Omega)$ (resp. $A_F^{\alpha}=\bigcup A^{\alpha}(\Omega)$), where Ω runs over compact sets in \mathbf{R} . Batty [3] showed that there exists a *-derivation Δ from $\pi(\mathcal{D}(\delta_{\alpha}))$ into $\pi(A)$ such that $\Delta(\pi(a))=\pi(\delta(a))$ for $a\in \mathcal{D}(\delta_{\alpha})$. It follows from Kishimoto [8] that Δ is σ -weakly closable and its closure $\bar{\Delta}$ is a generator of a σ -weakly continuous dynamics on M whose domain $\mathcal{D}(\bar{\Delta})$ contains $M_F^{\bar{\alpha}}$, and the restriction $\bar{\Delta}|_{M^{\alpha}(\Omega)}$ is σ -weakly continuous on $M^{\bar{\alpha}}(\Omega)\cap M_1$, where M_1 is the unit ball of M and Ω is an arbitrary compact subset of \mathbf{R} .

Let p be a one-dimensional projection in M associated with ξ , then p is fixed by the action $\bar{\alpha}$, so that belongs to $\mathcal{D}(\bar{\Delta})$. Set $h = i(\bar{\Delta}(p)p - p\bar{\Delta}(p)) \in M_h$, where M_h denotes the selfadjoint part of M. Since $\pi(A)$ acts irreducibly on \mathcal{H} , there exists $k \in A_h$ such that $\pi(k)\xi = h\xi$. Then we have, for x in $\mathcal{D}(\bar{\Delta})$,

$$\begin{split} \big(\big(\overline{\Delta} + \operatorname{Ad} i\pi(k) \big)(x) \xi, \xi \big) &= \big(\overline{\Delta}(x) \xi, \xi \big) + \big(\big[i\pi(k), x \big] \xi, \xi \big) \\ &= \big(\overline{\Delta}(x) \xi, \xi \big) + \big(\big[ih, x \big] \xi, \xi \big) \\ &= \big(\big(p\overline{\Delta}(x) p - p\overline{\Delta}(p) px + p\overline{\Delta}(p) x + px\overline{\Delta}(p) - xp\overline{\Delta}(p) p \big) \xi, \xi \big) \\ &= \big(\overline{\Delta}(pxp) \xi, \xi \big) \\ &= \big(p\overline{\Delta}(pxp) p\xi, \xi \big) \\ &= 0, \end{split}$$

where we used the equality $p\overline{\Delta}(p)p = 0$ and $pxp = \lambda p$ for some $\lambda \in \mathbb{C}$, which easily follows from $\overline{\Delta}(p) = \overline{\Delta}(p^2) = p\overline{\Delta}(p) + \overline{\Delta}(p)p$ and the fact that p is one-dimensional. These techniques are due to Bratteli and Robinson [5]. Since $\overline{\Delta} + \operatorname{Ad} i\pi(k)$ is a generator of a σ -weakly continuous dynamics on M, if we set

$$iK'x\xi = (\overline{\Delta} + \operatorname{Ad} i\pi(k))(x)\xi,$$

it follows from the above calculation that K' is a selfadjoint operator in \mathcal{H} such that

 $\mathcal{D}(K') = \mathcal{D}(\overline{\Delta})\xi$ and $\overline{\Delta} + \operatorname{Ad} i\pi(k) = \operatorname{Ad} iK'$. Setting $K = K' - \pi(k)$, we have, for $a \in \mathcal{D}(\delta_a)$,

$$\pi(\delta(a)) = \pi((\delta + \operatorname{Ad} ik)(a)) - \pi(\operatorname{Ad} ik(a))$$

$$= (\overline{\Delta} + \operatorname{Ad} i\pi(k))(\pi(a)) - \operatorname{Ad} i\pi(k)(\pi(a))$$

$$= \operatorname{Ad} iK'(\pi(a)) - \operatorname{Ad} i\pi(k)(\pi(a))$$

$$= \operatorname{Ad} iK(\pi(a)),$$

so that the assertions (i), (ii), and $\psi \circ (\delta + \operatorname{Ad} ik) = 0$ are proved.

By the general theory, $(1 + \Delta_{\bar{\alpha}})^{-1}$ is contractive and σ -weakly continuous and maps the spectral subspace $M^{\bar{\alpha}}(\Omega)$ onto itself. Since $\bar{\Delta}|_{M^{\bar{\alpha}}(\Omega)}$ is σ -weakly continuous on $M^{\bar{\alpha}}(\Omega) \cap M_1$ for every compact subset Ω of \mathbf{R} , $\bar{\Delta}(1 + \Delta_{\bar{\alpha}})^{-1}|_{M^{\bar{\alpha}}(\Omega)}$ is also σ -weakly continuous on $M^{\bar{\alpha}}(\Omega) \cap M_1$. On the other hand, by Longo [9], the condition $\mathcal{D}(\delta) = \mathcal{D}(\delta_{\alpha})$ leads to the relative boundedness of δ for δ_{α} , and Batty [3] shows that it also holds for Δ and $\Delta_{\bar{\alpha}}$ on $\pi(\mathcal{D}(\delta_{\alpha}))$, that is, there exist nonnegative constants c and d such that $\|\Delta\pi(a)\| \leq c\|\pi(a)\| + d\|\Delta_{\bar{\alpha}}\pi(a)\|$ for all a in $\mathcal{D}(\delta_{\alpha})$. Thus we have, for $x \in \pi(A)$,

$$\|\Delta(1 + \Delta_{\bar{\alpha}})^{-1}x\| \le c \|(1 + \Delta_{\bar{\alpha}})^{-1}x\| + d\|\Delta_{\bar{\alpha}}(1 + \Delta_{\bar{\alpha}})^{-1}x\|$$

$$\le (c + 2d)\|x\|.$$

By the continuity of $\overline{\Delta}(1 + \Delta_{\overline{\alpha}})^{-1}$ and the Kaplansky density theorem, the inequality also holds for any x in $M_F^{\overline{\alpha}}$. Setting $y = (1 + \Delta_{\overline{\alpha}})^{-1}x$, we have

$$\|\overline{\Delta}y\| \le (c+2d)\|(1+\Delta_{\overline{\alpha}})y\|$$

$$\le (c+2d)(\|y\|+\|\Delta_{\overline{\alpha}}(y)\|) \quad \text{for all } y \in M_F^{\overline{\alpha}}.$$

Since $\overline{\Delta}$ is σ -weakly closed, hence norm closed, and A_F^{α} is the core for δ_{α} , it follows that

$$\|\overline{\Delta}(\pi(a)p)\| \le (c+2d)(\|\pi(a)p\| + \|\Delta_{\overline{c}}(\pi(a)p)\|)$$
 for all a in $\mathscr{D}(\delta_{a})$.

Thus we have, for $a \in \mathcal{D}(\delta_{\alpha})$,

$$||K\pi(a)\xi|| \le ||(K + \pi(k))\pi(a)\xi|| + ||\pi(k)\pi(a)\xi||$$

$$= ||K'\pi(a)\xi|| + ||\pi(k)\pi(a)\xi||$$

$$= ||(\Delta + \operatorname{Ad} i\pi(k))(\pi(a))\xi|| + ||\pi(k)\pi(a)\xi||$$

$$= ||(\Delta + \operatorname{Ad} i\pi(k))(\pi(a))p|| + ||\pi(k)\pi(a)\xi||$$

$$= ||(\overline{\Delta} + \operatorname{Ad} i\pi(k))(\pi(a)p)|| + ||\pi(k)\pi(a)\xi||$$

$$\le (c + 2d)(||\pi(a)p|| + ||\Delta_{\overline{\alpha}}(\pi(a)p)||)$$

$$+ 2||k|||\pi(a)p|| + ||k|||\pi(a)\xi||$$

$$= (c + 2d + 3||k||)||\pi(a)\xi|| + (c + 2d)||\Delta_{\overline{\alpha}}(\pi(a))p||$$

$$= (c + 2d + 3||k||)||\pi(a)\xi|| + (c + 2d)||H\pi(a)\xi||,$$

where we used $(\overline{\Delta} + \operatorname{Ad} i\pi(k))(p) = \Delta_{\overline{\alpha}}(p) = 0$.

If δ is a generator, $\delta + \operatorname{Ad} ik$ is also a generator, so that, as the first remark in the proof for $\mathcal{D}(H)$, we have $\mathcal{D}(K') = \mathcal{D}(K) = \pi(\mathcal{D}(\delta_{\alpha}))\xi$. This completes the proof.

Let (A, α, \mathbb{R}) be a C^* -dynamical system and let δ_{α} be its generator. A state ψ of A is said to be a *ground state* for α iff it satisfies $i\psi(a^*\delta_{\alpha}(a)) \leq 0$ for all $a \in \mathcal{D}(\delta_{\alpha})$. In this case ψ is automatically α -invariant, if we denote the G.N.S. α -covariant representation for ψ by $(\pi, \mathcal{H}, \xi, H)$, we have $H \geq 0$ [6, 11].

COROLLARY 2. Let (A, α, \mathbf{R}) be a C^* -dynamical system which has ground states, let δ_{α} be a generator of α , and let δ be another *-derivation in A with the domain $\mathcal{D}(\delta) = \mathcal{D}(\delta_{\alpha})$. Then, for every real number λ with $|\lambda|$ sufficiently small, the continuous dynamics β generated by $\delta_{\beta} = \delta_{\alpha} + \lambda \delta$ also has ground states.

PROOF. The set of all ground states for α forms a weak*-closed face of the state space of A, so that its extremal points are pure ground states for α . Let ψ be a pure ground state for α , and let $(\pi, \mathcal{H}, \xi, H)$ be the G.N.S. α -covariant representation for ψ with $H \geq 0$. Then there exists a selfadjoint operator K in \mathcal{H} satisfying the conditions in Theorem 1. It follows that

$$\pi(\delta_{B}(a)) = \pi((\delta_{\alpha} + \lambda \delta)(a)) = [i(H + \lambda K), \pi(a)] \quad \text{for } a \in \mathcal{D}(\delta_{\alpha}).$$

For every real number λ with $|\lambda|$ sufficiently small, by [2], δ_{β} generates a continuous dynamics β and, by the relative boundedness of K for H, the Kato-Rellich Theorem [10, Theorem 5.4.11] asserts that $H + \lambda K$ is a lowerbounded selfadjoint operator. Thus, by [3, 11], β has ground states, which completes the proof.

COROLLARY 3. Let (A, α, \mathbf{R}) be a C^* -dynamical system which has an irreducible α -covariant representation (π, \mathcal{H}, H) with $\pi(\alpha_t(a)) = e^{itH}\pi(a)e^{-itH}$, δ be a *-derivation in A with the domain $\mathcal{D}(\delta) = \mathcal{D}(\delta_{\alpha})$, where δ_{α} is the generator of α . Then there exists a selfadjoint operator K in \mathcal{H} satisfying the three conditions (i)–(iii) in Theorem 1. Moreover, if δ is a generator, we have $\mathcal{D}(K) = \mathcal{D}(H)$.

PROOF. Set $\bar{\alpha}_t(x) = e^{itH}xe^{-itH}$ and $\Delta_{\bar{\alpha}} = \operatorname{Ad}iH$, and consider the C^* -dynamical system $(C(\mathcal{H}), \bar{\alpha}|_{C(\mathcal{H})}, \mathbf{R})$, where $C(\mathcal{H})$ is the C^* -algebra of all compact operators on \mathcal{H} . By Bratteli and Robinson [5], there exists a rank-one projection p in $\mathcal{D}(\Delta_{\bar{\alpha}})$. Let ξ be a unit vector in the range of p. The irreducibility of π implies that

$$\pi(h)\xi = i(\Delta_{\bar{\alpha}}(p)p - p\Delta_{\bar{\alpha}}(p))\xi$$
 for some $h \in A_h$.

Then, as in the proof of Theorem 1, we can see that

$$\psi_{\xi}((\delta_{\alpha} + \operatorname{Ad} ih)(a)) = (\pi((\delta_{\alpha} + \operatorname{Ad} ih)(a))\xi, \xi)$$
$$= 0 \quad \text{for } a \in \mathcal{D}(\delta_{\alpha}).$$

Applying Theorem 1 to $e^{t(\delta_{\alpha} + \operatorname{Ad} ih)}$ and δ , the assertion follows.

The relative boundedness question has been also considered in a slightly different context in the recent papers [4 and 7]. The author would like to thank the referee for having announced these papers to him.

REFERENCES

- 1. H. Araki, Relative Hamiltonian for faithful normal states of a von Neumann algebra, Publ. Res. Inst. Math. Sci. 9 (1973), 165-209.
 - 2. C. J. K. Batty, Small perturbations of C*-dynamical systems, Comm. Math. Phys. 68 (1978), 39-43.
- 3. _____, Perturbations of ground states of type I C*-algebras, Proc. Amer. Math. Soc. 78 (1980), 539-544.
- 4. O. Bratteli, F. M. Goodman and P. E. T. Jorgensen, Unbounded derivations tangential to compact groups of automorphisms. II, J. Funct. Anal. (to appear).
- 5. O. Bratteli and D. Robinson, Unbounded derivations of C*-algebras, Comm. Math. Phys. 42 (1975), 253-268.
- 6. _____, Operator algebras and quantum statistical mechanics. I, II, Springer-Verlag, Berlin and New York, 1979, 1981.
- 7. F. M. Goodman and P. E. T. Jorgensen, *Lie algebras of unbounded derivations*, J. Funct. Anal. 52 (1983), 369-384.
 - 8. A. Kishimoto, Derivations with a domain condition, preprint, 1984.
- 9. R. Longo, Automatic relative boundedness of derivations in C*-algebras, J. Funct. Anal. 34 (1979), 21-28
- 10. M. Reed and B. Simon, Methods of modern mathematical physics. II, Academic Press, New York, 1975.
- 11. S. Sakai, *The theory of unbounded derivations in C*-algebras*, Univ. of Copenhagen and Newcastle-upon-Tyne, Lecture Notes, 1977.

DEPARTMENT OF APPLIED MATHEMATICS, FUKUOKA UNIVERSITY, FUKUOKA 814, JAPAN