H¹ SUBORDINATION AND EXTREME POINTS

YUSUF ABU - MUHANNA

ABSTRACT. Suppose that F is an element of H^1 (Hardy class of order 1 over the unit disc). Let s(F) denote the set of functions subordinate to F. We show that if ϕ is inner and $\phi(0) = 0$; then $F \circ \phi$ is an extreme point of the closed convex hull of s(F).

1. Introduction. Let $U = \{z: |z| < 1\}$ and let A denote the set of functions analytic in U with the topology given by uniform convergence on compact subsets of U. It is known that A is a metrizable and locally convex space [8, p. 1]. Let B denote the subset of A consisting of all functions ϕ that satisfy $|\phi(z)| < 1$ ($z \in U$).

Suppose that F is a nonconstant function in A. Let s(F) denote the set of functions g that are subordinate to F in U. That is to say, s(F) is the collection of functions g given by

$$g = F \circ \phi$$

where $\phi \in B$ and $\phi(0) = 0$. The closed convex hull of s(F) is denoted by Hs(F) and the set of extreme points of Hs(F) is denoted by Ex(F). $Ex(F) \subseteq s(F)$ because s(f) is compact [2, p. 440].

A function $f \in A$ is said to belong to the class H^p (0) if

$$||f||_p = \lim_{r \to 1} \left\{ \frac{1}{2\pi} \int_0^{\pi} \left| f(re^{i\theta}) \right|^p d\theta \right\}^{1/p} < \infty.$$

Each $f \in H^p$ has a radial limit $f(e^{i\theta})$ almost everywhere and $f \in L^p$. For $f \in H^p$, we also have

$$\int_0^{2\pi} \left| f(re^{i\theta}) - f(e^{i\theta}) \right|^p d\theta \to 0$$

and

$$\int_0^{2\pi} \left| f(re^{i\theta}) \right|^p d\theta \leqslant \int_0^{2\pi} \left| f(e^{i\theta}) \right|^p d\theta$$

for every 0 < r < 1 [3, p. 21].

It is known that if $F \in H^p$ and $f \in Hs(F)$ then $||f||_p < ||F||_p$ [5, p. 465]. Suppose that $F \in H^p$ and $f \in s(F)$. In [7, p. 351] Ryff showed that

$$||f||_p = ||F||_p$$
 if and only if $f = F \circ \phi$

where ϕ is inner ($\phi \in B$ and $|\phi(e^{i\theta})| = 1$ almost everywhere) and $\phi(0) = 0$.

Received by the editors May 10, 1984 and, in revised form, December 19, 1984. 1980 Mathematics Subject Classification. Primary 30C80.

Key words and phrases. Extreme point, H^p -functions, inner function, outer function subordination.

In [5, p. 465] it was proven that if $F \in H^p$ (p > 1) then $\{F \circ \phi : \phi \text{ inner}, \phi(0) = 0\} \subset \operatorname{Ex}(F)$. D. J. Hallenbeck (unpublished) extended this result to the case p = 1 when either F is outer or F is univalent.

In this paper, we prove the following

THEOREM. If $F \in H^1$ then

(1)
$$\{F \circ \phi : \phi \text{ inner, } \phi(0) = 0\} \subset \operatorname{Ex}(F).$$

2. Lemma.

LEMMA. Suppose that X is a nonempty subset of A and there is a number M > 0 so that $||g||_1 \le M$ for every $g \in X$. Let μ be a probability measure on X and L_r be the function on $X \times [0, 2\pi]$ defined by

$$L_r(g,\theta) = g(re^{i\theta}) \qquad (r \leqslant 1).$$

Then L_r is measurable and integrable on $X \times [0, 2\pi]$ with respect to $d\mu d\theta$.

REMARK. μ is a Borel measure with $\mu(X) = 1$.

PROOF. First we want to show that L_r is continuous when r < 1. Let (g_n, θ_n) be a sequence in $X \times [0, 2\pi]$ which converges in the product topology to $(g, \theta) \in X \times [0, 2\pi]$. Then $g_n \to g$, $g'_n \to g'$ uniformly on compact subsets of U and $e^{i\theta_n} \to e^{i\theta}$. This implies that for every $\varepsilon > 0$ there exists an integer N > 0 so that whenever n > N

$$|g(re^{i\theta}) - g_n(re^{i\theta})| < \varepsilon, \qquad |g_n(re^{i\theta}) - g_n(re^{i\theta_n})| < (\varepsilon + k)\varepsilon$$

where $k = \max_{|z| \le r} |g'(z)|$. Since

$$\left|g(re^{i\theta})-g_n(re^{i\theta_n})\right| \leq \left|g(re^{i\theta})-g_n(re^{i\theta})\right|+\left|g_n(re^{i\theta})-g_n(re^{i\theta_n})\right|$$

we conclude that $L_r(g, \theta)$ is continuous.

Second, we want to show that L_r is measurable. For r < 1 and α real, let

$$E_{\alpha} = \{(g, \theta) : \operatorname{Re} L_{r}(g, \theta) > \alpha\}.$$

 E_{α} is open because Re L_r (r < 1) is continuous. Since the spaces X and $[0, 2\pi]$ are separable (polynomials whose coefficients have rational real parts and rational imaginary parts are dense in A), $X \times [0, 2\pi]$ is separable and every open set can be written as a countable union of sets of the form $O_n \times I_n$, where O_n is open in X and X_n is open in X_n . Hence X_n is measurable and consequently Re X_n is measurable. Similarly, it can be shown that Im X_n is also measurable. Hence X_n is measurable and consequently, as X_n is also measurable.

Now, we want to show that L_r is integrable. We have, by Tonelli's theorem, that

$$\int \int |g(re^{i\theta})| d\mu d\theta = \int \int |g(re^{i\theta})| d\theta d\mu \leq 2\pi M \qquad (r \leq 1).$$

Hence L_r is integrable.

3. Proof of the theorem. Write $F = I \cdot G$, where I is inner and G is outer [4, p. 74], and assume, without loss of generality, that $||F||_1 = 1$. Let $f = F \circ \phi$, where ϕ is inner and $\phi(0) = 0$. It is known that $G(\phi)$ is outer [9, p. 260] and $I(\phi)$ is inner. Since

Hs(F) is a metrizable and compact convex subset of A, it follows that Ex(F) is a G_{δ} subset of Hs(F) [6, p. 7] and, in addition, by Choquet's theorem [6, p. 19], there is a probability measure μ on Hs(F) supported by Ex(f) so that

$$f = \int_{\mathrm{Ex}(F)} g \, d\mu(g)$$

and, for every continuous linear functional L on A,

$$L(f) = \int_{\text{Ex}(F)} L(g) \, d\mu(g).$$

This implies that $f(z) = \int_{\text{Ex}(F)} g(z) d\mu(g) (z \in U)$. Hence

$$|f(z)| \le \int_{\operatorname{Ex}(F)} |g(z)| d\mu(g) \qquad (z \in U)$$

and, by Lemma 2, as $||g||_1 \le 1$ for every $g \in Hs(F)$,

$$\begin{split} \frac{1}{2\pi} \int \big| f(re^{i\theta}) \big| d\theta &\leqslant \frac{1}{2\pi} \int_{\operatorname{Ex}(F)} \int_0^{2\pi} \big| g(re^{i\theta}) \big| d\theta \ d\mu(g) \\ &\leqslant \int_{\operatorname{Ex}(F)} \|g\|_1 d\mu(g) \leqslant 1. \end{split}$$

Let $r \to 1$, to conclude that

$$1 = \|f\|_1 \le \int_{\mathrm{Ex}(F)} \|g\|_1 \, d\mu(g) \le 1.$$

Therefore $||g||_1 = 1$, μ -almost everywhere. Since $\operatorname{Ex}(F) \subset \operatorname{s}(F)$, it follows by Ryff's theorem, that, for μ -almost every $g \in \operatorname{Ex}(F)$, $g = F \circ \psi$ where ψ is inner and $\psi(0) = 0$. Consequently, $G \circ \psi$ is outer [9, p. 260] and $I \circ \psi$ is inner.

Now, we claim that $f(e^{i\theta}) = \int_{\text{Ex}(F)} g(e^{i\theta}) d\mu(g)$ for almost all θ . To show this, we let

$$H_r(g) = \frac{1}{2\pi} \int_0^{2\pi} |g(re^{i\theta}) - g(e^{i\theta})| d\theta.$$

Then $\lim_{r\to 1} H_r(g) = 0$, $H_r(g) \le 2\|g\|_1 \le 2$ and, by the lemma and Tonelli's theorem, H_r is integrable. This and the bounded convergence theorem give $\lim_{r\to 1} \int_{\operatorname{Ex}(F)} H_r(g) \, d\mu(g) = 0$. Hence,

$$\frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) - \int_{\operatorname{Ex}(F)} g(e^{i\theta}) \, d\mu \right| d\theta \leqslant \int_{\operatorname{Ex}(F)} H_r(g) \, d\mu(g) \underset{r \to 1}{\to} 0.$$

Since $\int_0^{2\pi} |f(re^{i\theta}) - f(e^{i\theta})| d\theta \to 0$, $f(e^{i\theta}) = \int_{\text{Ex}(F)} g(e^{i\theta}) d\mu(g)$ for almost all θ and the claim is proved.

Let L be the linear functional on H^1 defined by

(2)
$$L(h) = \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\theta})|}{f(e^{i\theta})} h(e^{i\theta}) d\theta$$

where $h \in H^1$. Then $|L(h)| \le 1$ whenever $||h||_1 \le 1$, in particular $|L(h)| \le 1$ for $h \in Hs(F)$, and

(3)
$$1 = L(f) = \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\theta})|}{f(e^{i\theta})} \int_{\text{Ex}(F)} g(e^{i\theta}) d\mu(g) d\theta.$$

Since $(|f(e^{i\theta})|/f(e^{i\theta}))g(e^{i\theta})$ is measurable on $\operatorname{Hs}(F) \times [0, 2\pi]$ and $|g(e^{i\theta})|$ is integrable on $\operatorname{Hs}(F) \times [0, 2\pi]$, by the lemma, it follows that $(|f(e^{i\theta})|/f(e^{i\theta}))g(e^{i\theta})$ is integrable on $\operatorname{Hs}(F) \times [0, 2\pi]$. Hence

$$1 = L(f) = \int_{E_{\mathbf{x}}(F)} L(g) d\mu(g)$$

and consequently L(g) = 1, μ -almost everywhere, because $|L(g)| \le 1$. This and (2) give that

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{|f(e^{i\theta})|}{f(e^{i\theta})} g(e^{i\theta}) d\theta = ||g||_1 = 1, \quad \mu\text{-almost everywhere.}$$

Hence, it follows that $g(e^{i\theta})/f(e^{i\theta}) = K_g(e^{i\theta}) > 0$ for almost every θ and μ -almost every $g \in \text{Ex}(F)$. We also have, as $f(e^{i\theta}) = \int_{\text{Ex}(F)} g(e^{i\theta}) d\mu(g)$,

$$\int_{E_X(F)} K_g(e^{i\theta}) d\mu(g) = 1 \text{ for almost all } \theta.$$

Since $G(\phi)$ is the outer factor of f and $G(\psi)$ is the outer factor of g, for μ -almost every $g \in \text{Ex}(F)$, where $g = F \circ \psi$ with ψ inner and $\psi(0) = 0$, it follows that

$$\int_0^{2\pi} \log |f(e^{i\theta})| d\theta = \log |G(\phi(0))| = \log |G(0)|$$

and

$$\int_0^{2\pi} \log |g(e^{i\theta})| d\theta = \log |G(\psi(0))| = \log |G(0)| \quad [3, p. 24].$$

Therefore $\int_0^{2\pi} \log K_g(e^{i\theta}) d\theta = 0$ for μ -almost all $g \in \text{Ex}(F)$. But then by Jensen's inequality,

(4)
$$1 = \exp \int_0^{2\pi} \log K_g(e^{i\theta}) \frac{d\theta}{2\pi} \leqslant \int_0^{2\pi} K_g(e^{i\theta}) \frac{d\theta}{2\pi}$$

for μ -almost all $g \in Ex(F)$. Hence

$$\begin{split} 1 &= \int_{\operatorname{Ex}(F)} \left[\exp \int_0^{2\pi} \log K_g(e^{i\theta}) \, \frac{d\theta}{2\pi} \right] d\mu(g) \\ &\leq \int_{\operatorname{Ex}(F)} \int_0^{2\pi} K_g(e^{i\theta}) \, \frac{d\theta}{2\pi} d\mu = \int_0^{2\pi} \int_{\operatorname{Ex}(F)} K_g(e^{i\theta}) \, d\mu \, \frac{d\theta}{2\pi} = 1. \end{split}$$

This and (4) imply that $(1/2\pi)\int_0^{2\pi} K_g(e^{i\theta}) d\theta = 1$ for μ -almost all $g \in \operatorname{Ex}(F)$. Since exp is strictly convex, we conclude from (4) that $K_g(e^{i\theta}) = 1$ for almost all θ and μ -almost all $g \in \operatorname{Ex}(F)$. Therefore f is an extreme point and μ is a point mass.

REMARKS. (1) The above proof is partially a generalization of a proof due to K. de Leeuw and W. Rudin [4, p. 158].

(2) For any p < 1, choose λ so that $p < \lambda < 1$. Then $F(z) = 1/(1-z)^{\lambda/p} \in H^p$ and since $\lambda/p > 1$ it is known that $\operatorname{Ex}(F) = \{F(yz): |y| = 1\}$ [1]. It follows that once p < 1 the inclusion in the above theorem is false (see (1)). This remark is due to D. J. Hallenbeck.

Finally, I would like to thank the University of Petroleum and Minerals for encouraging this research.

REFERENCES

- 1. D. A. Brannan, J. G. Clunie and W. E. Kirwan, On the coefficient problem for functions of bounded boundary rotation, Ann. Acad. Sci. Fenn. Ser. A. Math. Phys. 523 (1979).
 - 2. N. Dunford and J. Schwartz, *Linear operators*, Part I, Interscience, New York, 1957.
 - 3. P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.
 - 4. J. P. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- 5. D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme point theory, Pacific J. Math. 50 (1974), 455-468.
 - 6. R. R. Phelps, Lectures on Choquet's theorem, Van Nostrand, New York, 1966.
 - 7. J. V. Ryff, Subordinate H^p functions, Duke Math. J. 33 (1966), 347-354.
- 8. G. Schober, Univalent functions—Selected topics, Springer-Verlag, Berlin, Heidelberg and New York, 1975
 - 9. K. Stephenson, Functions which follow inner functions, Illinois J. Math. 23 (1979), 259-266.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN, SAUDI ARABIA 31261