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H1 SUBORDINATION AND EXTREME POINTS

YUSUF ABU - MUHANNA

Abstract. Suppose that F is an element of H1 (Hardy class of order 1 over the unit

disc). Let s(F) denote the set of functions subordinate to F. We show that if 0 is

inner and <f>(0) = 0: then F ° <f> is an extreme point of the closed convex hull of s( F).

1. Introduction. Let U = {z: \z\ < 1} and let A denote the set of functions analytic

in U with the topology given by uniform convergence on compact subsets of U. It is

known that A is a metrizable and locally convex space [8, p. 1]. Let B denote the

subset of A consisting of all functions (f> that satisfy |<MZ)I < 1 (z G U).

Suppose that F is a nonconstant function in A. Let s(F) denote the set of

functions g that are subordinate to F in U. That is to say, s(F) is the collection of

functions g given by

g = F»,),

where <¡> g B and <¡>(0) = 0. The closed convex hull of s(F) is denoted by Hs(F) and

the set of extreme points of Hs(F) is denoted by Ex(F). Ex(F) ç s(F) because s(/)

is compact [2, p. 440].

A function/ g A is said to belong to the class Hp (0 < p < oo) if

ll/||,-lim{¿jT|/(«'*)|'^)V''<«>-

Each/ g Hp has a radial limit f(e'e) almost everywhere and/ g Lp. For/ g Hp, we

also have

f2" \f(re») - fU«)f dff-+0

and

J2' \f(re-°)\Pd6 </2" \f(e")fde
Jo Jo

for every 0 < r < 1 [3, p. 211

It is known that if F g Hp and/ g Hs(F) then \\f\\p < \\F\\p [5, p. 465].

Suppose that Feff'and/e s(F). In [7, p. 351] Ryff showed that

||/H, = \\F\\p   if and only if   /=F°<i>

where <i> is inner (<f> g B and \<p(e'e)\ = 1 almost everywhere) and #(0) - 0.
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In [5, p. 465] it was proven that if F g Hp (p > 1) then {F°<p: <f> inner,

<|>(0) = 0} c Ex(F). D. J. Hallenbeck (unpublished) extended this result to the case

p = 1 when either F is outer or F is univalent.

In this paper, we prove the following

Theorem. IfF^H1 then

(1) {F°<¡>:<p inner, <j>(0) = 0} c Ex(F).

2. Lemma.

Lemma. Suppose that X is a nonempty subset of A and there is a number M > 0 so

that \\g\\x < M for every g g A. Let p be a probability measure on X and Lr be the

function on X X [0,277] defined by

Lr(g,6) = g(re'e)        (r<l).

Then Lr is measurable and integrable on X X [0, 277] with respect to dp d6.

Remark, p is a Borel measure with p( X) = 1.

Proof. First we want to show that Lr is continuous when r < 1. Let (g„, 6n) be a

sequence in AX [0,277] which converges in the product topology to (g, 0) g X X

[0,277]. Then gn —> g, g'n -» g' uniformly on compact subsets of U and e'e" -* e'9.

This implies that for every e > 0 there exists an integer N > 0 so that whenever

« > N

\g(re'<>) - gn(re's)\ < e,        \gn(re«>) - gn(rei9-)\ < (e + k)e

where k = max,2|<r|g'(2)|. Since

\g(re") - a,<MJf.)| < \g{re'°) - gn(re<°)\ + \gn(re<°) - gn(re"*)\

we conclude that Lr(g, 6) is continuous.

Second, we want to show that Lr is measurable. For r < 1 and a real, let

Fa= {(g,0):ReLr(g,0)>a}.

Ea is open because ReLr (r < 1) is continuous. Since the spaces X and [0,277] are

separable (polynomials whose coefficients have rational real parts and rational

imaginary parts are dense in A), Ax [0,277] is separable and every open set can be

written as a countable union of sets of the form On X In, where On is open in X and

/„ is open in [0,277]. Hence Ea is measurable and consequently Re Lr is measurable.

Similarly, it can be shown that Im Lr is also measurable. Hence Lr (r < 1) is

measurable and consequently, as L, = limr^1 Lr, Lx is also measurable.

Now, we want to show that Lr is integrable. We have, by Tonelli's theorem, that

/ j\g(re'e)\dpde = j f\g(re'e)\dedp < 2t7M       (r < 1).

Hence Lr is integrable.

3. Proof of the theorem. Write F = I ■ G, where / is inner and G is outer [4, p. 74],

and assume, without loss of generality, that ||F||, = 1. Let/ = F ° <p, where <b is inner

and <p(0) = 0. It is known that G(<j>) is outer [9, p. 260] and I(<b) is inner. Since
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Hs(F) is a metrizable and compact convex subset of A, it follows that Ex(F) is a Gs

subset of Hs(F) [6, p. 7] and, in addition, by Choquet's theorem [6, p. 19], there is a

probability measure p on Hs(F) supported by Ex(/) so that

/=/        gdp(g)
■'Ex(F)

and, for every continuous linear functional L on A,

L(f)=f       L(g)dp(g).
JExl F)■'Ex(F)

This implies that/(z) = /e^f, g(z) dp(g) (z G U). Hence

|/(z)|</ \g(z)\dp(g)        (ZGÍ7)
•'FW F1'Ex(F)

and, by Lemma 2, as ||g||i < 1 for every g G Hs(F),

L f \f(re»)\d8 < ± J        J2' \g(re>°)\d6 dp(g)
\W J 277 JEx(F)   J0

<f       \\g\\idp(g)<l.
•'Fvi F\'Ex(F)

Let r -» 1, to conclude that

JEx(F)
i=ll/lli<7    iigiii^(g)<i.

Therefore \\g\\x = 1, p-almost everywhere. Since Ex(F) c s(F), it follows by Ryff's

theorem, that, for p-almost every g g Ex(F), g = F°\j/ where \p is inner and

\(/(0) = 0. Consequently, G ° ^ is outer [9, p. 260] and I ° ¡pis inner.

Now, we claim that/(e'*) = f^F) S(e'9) dp(g) for almost all 0. To show this, we

let

HÂ8) = ^j*"Mre»)-g(e>°)\dê.

Then lim,.^ Hr(g) = 0, Hr(g) < 2||g||, < 2 and, by the lemma and Tonelli's theo-

rem, Hr is integrable. This and the bounded convergence theorem give

limr-i /Ex(f ) Hr(g) dp(g) = 0. Hence,

¿P7 f(rei9)-J       g(e'°)dpd0^j       Hr(g) dp(g) -0.
zw ■'0 •/Ex(/7) jEk(F) r-»l

Since /^/(/V9)-/^)!^ - 0, /(e'V/^ngli'Vci«) for almost all 0
r-l

and the claim is proved.

Let L be the linear functional on Hl defined by

(2) l^=h r ^tñ^^^ de
¿it JQ      f(e'")
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where h g H1. Then \L(h)\ < 1 whenever \\h\\x < 1, in particular \L(h)\ < 1 for

h g Hs(F), and

(3)
1    f2« \f(e>e)

277 J0      /(*?   )  •'ex(F)

¿ F"   «  J\ g(e'e"> d6 = ^\\i = l*   rt-almost everywhere.

Since (\f(eie)\/f(e'e))g(e'e) is measurable on Hs(F) X [0,2t7] and \g(e'e)\ is inte-

grable on Hs(F) X [0,277], by the lemma, it follows that (\f(e'e)\/f(e'e))g(e'e) is

integrable on Hs(F) X [0,277]. Hence

l = L(/)=/        L(g)dp(g)
JEM F)

and consequently L(g) = 1, p-almost everywhere, because |L(g)| < 1. This and (2)

give that

1     (2«   \f(e")\

Jo      f(e>«)

Hence, it follows that g(e'e)/f(e'e) = Kg(e'B) > 0 for almost every 8 and p-almost

every g g Ex(F). We also have, asf(e'e) = fEx,F) g(e'e) dp(g),

f       KJe'6) dp(g) = 1    for almost all 0.
•/Ex( F)

Since G(<i>) is the outer factor of/ and G(\p) is the outer factor of g, for p-almost

every g g Ex(F), where g = F ° \p with \p inner and \p(0) = 0, it follows that

í2* log|/(e<*)|¿0 = log|G(*(0))| = log|G(0)|

and

f277 log|g(é>íS)|¿0 = log|G(^(0))| = log|G(0)|    [3, p. 24].
•'0

Therefore /rj^log Kg(e'e) dO = 0 for p-almost all g g Ex(F). But then by Jensen's

inequality,

(4) i = «P/;-iog*,(e.«)f</;x^>f
for p-almost all g g Ex(F). Hence

r2«r,     „ ,   ,«* dO
1=( expf \ogKg{e«)^   dp(g)

•'Ex(F)  L J0 lv .

/Fvííti   •'n 5 ¿77 /n        ^FWFí       s ¿77'Ex(F)  •'O Z7r •'O       •'Ex(F)

This and (4) imply that (l/2tr)¡^ Kg(e,e) d6 = 1 for p-almost all g g Ex(F). Since

exp is strictly convex, we conclude from (4) that Kg(e'e) = 1 for almost all 6 and

p-almost all g g Ex(F). Therefore/is an extreme point and p is a point mass.

Remarks. (1) The above proof is partially a generalization of a proof due to K.

de Leeuw and W. Rudin [4, p. 158].
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(2) For any p < 1, choose X so thatp < X < 1. Then F(z) = 1/(1 - z)x/p g Hp

and since X/p > 1 it is known that Ex(F) = {F(yz): \y\ = 1} [1]. It follows that

oncep < 1 the inclusion in the above theorem is false (see (1)). This remark is due to

D. J. Hallenbeck.

Finally, I would like to thank the University of Petroleum and Minerals for

encouraging this research.
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