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COMPACTNESS IN L2 AND THE FOURIER TRANSFORM

ROBERT L. PEGO

Abstract. The Riesz-Tamarkin compactness theorem in LP(R" ) employs notions of

¿''-equicontinuity and uniform ¿''-decay at oo. When 1 < p < 2, we show that these

notions correspond under the Fourier transform, and establish new necessary and

sufficient criteria for compactness in L2(R").

An oft-quoted classical result characterizing compact sets in L^R") is due to

M. Riesz and J. D. Tamarkin (see [1, 2, 4]):

Theorem. A bounded subset K of LP(R"), 1 < p < oo, is conditionally compact if

and only if

(I) jR„ \f(x + y) — f(x)\p dx -* 0 as y -» 0 uniformly for f in K, and

(il) S\x\>r \f(x)\p dx -» 0 as R -> oo uniformly for f in K.

Property (I) is a uniform smoothness property. By analogy with the terminology of

Arzela-Ascoli, we say the functions in K are L^-equicontinuous if (I) holds. Property

(II) is a uniform decay property. The connection between smoothness and decay

through the Fourier transform has been well explored [6]. Yet the following nice

equivalence seems to be new:

Theorem 1. Let K be a bounded subset of L2(R") and let K be the Fourier transform

of K, K = {/I/gAT}. The functions of K are L2-equicontinuous if and only if the

functions of K decay uniformly in L2, and vice versa. That is, K satisfies (I) in L2 if and

only if K satisfies (II) in L2, and vice versa.

Combining this result with the Riesz-Tamarkin theorem, we obtain two alternative

characterizations of compact sets in L2(R"):

Theorem 2. A bounded subset K of L2(R") is conditionally compact if and only if

/l/(* + y) - f(x)\2 dx -> 0 as y -> 0, and j |/(£ + w) -/(£)|2¿| -> 0 as u -> 0,

both uniformly for f in K.

Theorem 3. A bounded subset K of L2(R") is conditionally compact if and only if

}\x\>r \f(x)\2dx -» Oand fß:>R \f(£)\2d£^>0asR^> oo, both uniformly for f in K.
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Theorem 1 is an easy consequence of the theorem below, which offers some results

inL^, 1 <p < 2.

Theorem 4. Let K be a bounded subset of Lp, 1 ^ p < 2. // K satisfies (I) (resp.

(II)) in Lp, then K satisfies (II) (resp. (I)) in Lq, where 1/p + 1/q = 1. (If q = oo,

conditions (I) and (II) are to be stated in the obvious way using the sup norm.)

Let us set our notation and recall some basic results. For/ g Ll(R"),

/(«)=/  /(x)e-«*dx.

Recall [3]:

(1) The Fourier transform above extends to a bounded linear map/ -» /from L'

to L« for 1 < p < 2 and 1/p + 1/c? = 1, so ||/||, < C\\f\\p for/in L".

(2) For/in L* a in R", we have [«r"**/(*)f (Í) = /(£ + «) in L«.

(3) For/in Lp, »// in the Schwartz classa, (f *^)\è) = f(è)Hè) in L9, where

/* Hx) -frfix ~yMy)dy.
Proof of Theorem 4. First, we assume K satisfies (II) in Lp. Let M be a bound

lor KinLp.¥orfinK,

/(* + «)-/(*) =[(*-'"■* -l)f(x)YU),

whence

||/(| + W)-/(É)||,<Cj(e-'"--l)/(x)t

<C,(/        (\œ\\x\\f(x)\)Pdx + 2Î        \f(x)fdx)
\J\x\<,R J\x\>R I

i/>

Let e > 0. Because of (II) we may choose R so large that the second term here is less

than \(e/Cp)p independent of / in K. Then since /w<Ä(|x| \f(x)\)p dx < (RM)P

for / in K, we have ||/(£ + w) - f(i)\\q < e if u is sufficiently small, \u\p

< \(e/CpRM)p, independent of/in K. So JC satisfies (I) in L".

Now assume K satisfies (I) in Lp. We seek to show that functions in K decay

uniformly in Li. Let ^(x) = (277)-"/2eHjr|2/2, ^R(x) = ^(Rx)R", so that ^R and

¿«(£) = H$/R) are in y, with ¿(£) = e"li|2/2, ¿R(0) = /^«(v) </v = 1. Now for

\i\>2R,\ «1 - Í-A(¿), so for/ g Ä-,

\[i   \mqdi
L ní|>2A

1/9

<ll/(0(i-**(i))L

<Cj/(*)-/»*Ä(*)||,

= c„ / j (f(x)-f(x-y))*R(y)dy

By Jensen's inequality and Fubini's theorem, this is

dx
i/p

< C f\j\f(x)-f(x dx 4>(y)dy
Wp
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Now define a uniform Lp modulus of continuity for K,

H(y)= sup [ \f(x) - f(x - y)\P dx.
f<=KJ

By (I), H(y) -* 0 as v -» 0, and H(y) < (2M)P for all v. From above, we have

f >2R\f(0\"dè     \lCp I H($)*(y)dy
Vp

-> 0

as R —> oo uniformly for/in K. Hence, K satisfies (II).

We conclude with a small application, which illustrates a principle known in

information theory (see [5]) that an operator in L2 that is "band limited and time

limited" is compact.

Fix any <j>x(x), <j>2(x) bounded functions on R" which satisfy lim^x^00(j>j(x) = 0,

i = 1,2, and let <p¡ denote the multiplication operator on L2 given by u(x) -*

<b;(x)u(x), i = 1,2. Let F denote the Fourier transform operator u —> Fu = û.

Define an operator Fon L2 by T = <pxF<j>2. Assume <t>x(x) is continuous.

Proposition. T is a compact operator on L2.

Proof. Let A" be a bounded set in L2. Clearly, the set <p2K has the uniform decay

property (II) in L2. From Theorem 1, the set F<p2K is L2-equicontinuous (has

property (I)). The set TK = <t>xF(b2 is also L2-equicontinuous, and also has the

uniform decay property (II). By Riesz-Tamarkin, it follows that TK is precompact.

Q.E.D.
Acknowledgement. The author thanks Jonathan Goodman for pointing out this

application.
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