COMPACTNESS IN L^2 AND THE FOURIER TRANSFORM

ROBERT L. PEGO

ABSTRACT. The Riesz-Tamarkin compactness theorem in $L^p(\mathbb{R}^n)$ employs notions of L^p -equicontinuity and uniform L^p -decay at ∞ . When $1 \le p \le 2$, we show that these notions correspond under the Fourier transform, and establish new necessary and sufficient criteria for compactness in $L^2(\mathbb{R}^n)$.

An oft-quoted classical result characterizing compact sets in $L^p(\mathbb{R}^n)$ is due to M. Riesz and J. D. Tamarkin (see [1, 2, 4]):

THEOREM. A bounded subset K of $L^p(\mathbb{R}^n)$, $1 \le p < \infty$, is conditionally compact if and only if

- (I) $\int_{\mathbf{R}^n} |f(x+y) f(x)|^p dx \to 0$ as $y \to 0$ uniformly for f in K, and
- (II) $\int_{|x|>R} |f(x)|^p dx \to 0$ as $R \to \infty$ uniformly for f in K.

Property (I) is a uniform smoothness property. By analogy with the terminology of Arzela-Ascoli, we say the functions in K are L^p -equicontinuous if (I) holds. Property (II) is a uniform decay property. The connection between smoothness and decay through the Fourier transform has been well explored [6]. Yet the following nice equivalence seems to be new:

THEOREM 1. Let K be a bounded subset of $L^2(\mathbf{R}^n)$ and let \hat{K} be the Fourier transform of K, $\hat{K} = \{\hat{f} | f \in K\}$. The functions of K are L^2 -equicontinuous if and only if the functions of \hat{K} decay uniformly in L^2 , and vice versa. That is, K satisfies (I) in L^2 if and only if \hat{K} satisfies (II) in L^2 , and vice versa.

Combining this result with the Riesz-Tamarkin theorem, we obtain two alternative characterizations of compact sets in $L^2(\mathbb{R}^n)$:

THEOREM 2. A bounded subset K of $L^2(\mathbf{R}^n)$ is conditionally compact if and only if $\int |f(x+y)-f(x)|^2 dx \to 0$ as $y \to 0$, and $\int |\hat{f}(\xi+\omega)-\hat{f}(\xi)|^2 d\xi \to 0$ as $\omega \to 0$, both uniformly for f in K.

THEOREM 3. A bounded subset K of $L^2(\mathbf{R}^n)$ is conditionally compact if and only if $\int_{|x|>R} |f(x)|^2 dx \to 0$ and $\int_{|\xi|>R} |\hat{f}(\xi)|^2 d\xi \to 0$ as $R \to \infty$, both uniformly for f in K.

Received by the editors November 7, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46E30, 42B99.

Key words and phrases. Compactness, Fourier transform, L^p , L^2 , L^p -equicontinuity.

Theorem 1 is an easy consequence of the theorem below, which offers some results in L^p , $1 \le p \le 2$.

THEOREM 4. Let K be a bounded subset of L^p , $1 \le p \le 2$. If K satisfies (I) (resp. (II)) in L^p , then \hat{K} satisfies (II) (resp. (I)) in L^q , where 1/p + 1/q = 1. (If $q = \infty$, conditions (I) and (II) are to be stated in the obvious way using the sup norm.)

Let us set our notation and recall some basic results. For $f \in L^1(\mathbf{R}^n)$,

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-i\xi \cdot x} dx.$$

Recall [3]:

- (1) The Fourier transform above extends to a bounded linear map $f \to \hat{f}$ from L^p to L^q , for $1 \le p \le 2$ and 1/p + 1/q = 1, so $||\hat{f}||_q \le C_p ||f||_p$ for f in L^p .
 - (2) For f in L^p , ω in \mathbb{R}^n , we have $[e^{-i\omega x}f(x)]^{\hat{}}(\xi) = \hat{f}(\xi + \omega)$ in L^q .
- (3) For f in L^p , ψ in the Schwartz class \mathscr{S} , $(f * \psi)^{\hat{}}(\xi) = \hat{f}(\xi)\hat{\psi}(\xi)$ in L^q , where $f * \psi(x) = \int_{\mathbb{R}^n} f(x y)\psi(y) dy$.

PROOF OF THEOREM 4. First, we assume K satisfies (II) in L^p . Let M be a bound for K in L^p . For f in K,

$$\hat{f}(\xi + \omega) - \hat{f}(\xi) = \left[\left(e^{-i\omega \cdot x} - 1 \right) f(x) \right] \hat{f}(\xi),$$

whence

$$\begin{split} \|\hat{f}(\xi+\omega) - \hat{f}(\xi)\|_{q} &\leq C_{p} \|(e^{-i\omega \cdot x} - 1)f(x)\|_{p} \\ &\leq C_{p} \left(\int_{|x| \leq R} \left(|\omega| \, |x| \, |f(x)| \right)^{p} dx + 2 \int_{|x| > R} \left| f(x) \right|^{p} dx \right)^{1/p}. \end{split}$$

Let $\varepsilon > 0$. Because of (II) we may choose R so large that the second term here is less than $\frac{1}{2}(\varepsilon/C_p)^p$ independent of f in K. Then since $\int_{|x| \le R} (|x| |f(x)|)^p dx \le (RM)^p$ for f in K, we have $\|\hat{f}(\xi + \omega) - \hat{f}(\xi)\|_q < \varepsilon$ if ω is sufficiently small, $|\omega|^p < \frac{1}{2}(\varepsilon/C_pRM)^p$, independent of f in K. So \hat{K} satisfies (I) in L^q .

Now assume K satisfies (I) in L^p . We seek to show that functions in \hat{K} decay uniformly in L^q . Let $\psi(x) = (2\pi)^{-n/2}e^{-|x|^2/2}$, $\psi_R(x) = \psi(Rx)R^n$, so that ψ_R and $\hat{\psi}_R(\xi) = \hat{\psi}(\xi/R)$ are in \mathscr{S} , with $\hat{\psi}(\xi) = e^{-|\xi|^2/2}$, $\hat{\psi}_R(0) = \int \psi_R(y) \, dy = 1$. Now for $|\xi| \ge 2R$, $\frac{1}{2} \le 1 - \hat{\psi}_R(\xi)$, so for $f \in K$,

$$\frac{1}{2} \left(\int_{|\xi| > 2R} |\hat{f}(\xi)|^q d\xi \right)^{1/q} \le \|\hat{f}(\xi)(1 - \hat{\psi}_R(\xi))\|_q
\le C_p \|f(x) - f * \psi_R(x)\|_p
= C_p \left[\int \left| \int (f(x) - f(x - y)) \psi_R(y) dy \right|^p dx \right]^{1/p}.$$

By Jensen's inequality and Fubini's theorem, this is

$$\leq C_p \left[\int \left[\int \left| f(x) - f\left(x - \frac{y}{R}\right) \right|^p dx \right] \psi(y) dy \right]^{1/p}.$$

254 R. L. PEGO

Now define a uniform L^p modulus of continuity for K,

$$H(y) = \sup_{f \in K} \int |f(x) - f(x - y)|^p dx.$$

By (I), $H(y) \to 0$ as $y \to 0$, and $H(y) \le (2M)^p$ for all y. From above, we have

$$\left[\int_{|\xi| > 2R} \left| \hat{f}(\xi) \right|^q d\xi \right]^{1/q} \le 2C_p \left[\int H\left(\frac{y}{R}\right) \psi(y) dy \right]^{1/p} \to 0$$

as $R \to \infty$ uniformly for f in K. Hence, \hat{K} satisfies (II).

We conclude with a small application, which illustrates a principle known in information theory (see [5]) that an operator in L^2 that is "band limited and time limited" is compact.

Fix any $\phi_1(x)$, $\phi_2(x)$ bounded functions on \mathbb{R}^n which satisfy $\lim_{|x| \to \infty} \phi_i(x) = 0$, i = 1, 2, and let ϕ_i denote the multiplication operator on L^2 given by $u(x) \to \phi_i(x)u(x)$, i = 1, 2. Let F denote the Fourier transform operator $u \to Fu = \hat{u}$. Define an operator T on L^2 by $T = \phi_1 F\phi_2$. Assume $\phi_1(x)$ is continuous.

PROPOSITION. T is a compact operator on L^2 .

PROOF. Let K be a bounded set in L^2 . Clearly, the set $\phi_2 K$ has the uniform decay property (II) in L^2 . From Theorem 1, the set $F\phi_2 K$ is L^2 -equicontinuous (has property (I)). The set $TK = \phi_1 F\phi_2$ is also L^2 -equicontinuous, and also has the uniform decay property (II). By Riesz-Tamarkin, it follows that TK is precompact. O.E.D.

ACKNOWLEDGEMENT. The author thanks Jonathan Goodman for pointing out this application.

REFERENCES

- 1. R. Adams, Sobolev spaces, Academic Press, New York, 1975.
- 2. N. Dunford and J. T. Schwartz, Linear operators, Part I, Wiley-Interscience, New York, 1966.
- 3. E. M. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*, Princeton Univ. Press, Princeton N. J., 1971.
 - 4. K. Yosida, Functional analysis, 2nd ed., Springer-Verlag, New York, 1968.
- 5. H. J. Landau and H. O. Pollack, *Prolate spherodial wave functions, Fourier analysis, and uncertainty.* III, Bell System Tech. J. **41** (1962), 1295–1336.
- 6. M. Murata, A theorem of Liouville type for partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo IA 21 (1974), 395-404.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109