DEFORMATIONS OF COMPLEX SUPERMANIFOLDS

MITCHELL J. ROTHSTEIN

ABSTRACT. The supermanifold analogue of the Kodaira-Nirenberg-Spencer existence theorem for deformations of complex structures is given. It is shown that every complex supermanifold is a deformation of a vector bundle.

0. Supermanifolds, first used by physicists for modelling quantum gravity, have emerged as objects of independent interest. This paper will concentrate on supermanifolds with a complex structure, though the results also yield a simple and transparent proof of the fact that any supermanifold with only its C^{∞} structure is the sheaf of sections of a vector bundle [1].

Let X be a complex manifold, with sheaf of holomorphic functions \mathcal{O} . Let \mathscr{E} be a locally free sheaf of \mathcal{O} -modules. Then $\Lambda\mathscr{E}$, the sheaf of exterior algebras of \mathscr{E} over \mathcal{O} , is an example of a complex supermanifold. $\Lambda\mathscr{E}$ is, among other things, a sheaf of supercommutative algebras. This means that $\Lambda\mathscr{E}$ is \mathbf{Z}_2 -graded and $ab = (-1)^{|b||a|}ba$ for a and b of definite parity. $\Lambda\mathscr{E}$ is also a sheaf of \mathscr{O} -modules, and a sheaf of \mathbf{Z}_2 -graded algebras, but for supersymmetry one is concerned only with the \mathbf{Z}_2 -grading. This leads to the following more general definition:

DEFINITION. A complex supermanifold of dimension (m, n) is a sheaf (M, \mathcal{A}) of supercommutative algebras over \mathbb{C} such that

- (1) $(M, \mathcal{A}/\mathcal{N})$ is an *m*-dimensional complex manifold. (\mathcal{N} is the ideal of nilpotent elements of \mathcal{A} .)
- (2) The sheaves (M, \mathcal{A}) and $(M, \Lambda \mathbb{C}^n \otimes \mathcal{A}/\mathcal{N})$ are locally isomorphic as sheaves of \mathbb{Z}_2 -graded commutative algebras over \mathbb{C} .

Set $\mathcal{O} = \mathcal{A}/\mathcal{N}$ and $\mathcal{E} = \mathcal{N}/\mathcal{N}^2$. Then \mathcal{E} is an \mathcal{O} -module, and it follows from (2) that \mathcal{E} is locally free. That is, \mathcal{E} is the sheaf of sections of a holomorphic vector bundle. By writing $\mathcal{A}/\mathcal{N}^2$ as the direct sum of its even and odd parts, one obtains an exact sequence of sheaves of vector spaces

$$(*) 0 \to \mathcal{N}^2 \to \mathcal{A} \to \mathcal{O} \oplus \mathcal{E} \to 0.$$

If there is a splitting

$$0 \to \mathcal{O} + \mathscr{E} \overset{\mu}{\to} \mathscr{A}$$

Received by the editors January 20, 1984 and, in revised form, December 27, 1984. 1980 *Mathematics Subject Classification*. Primary 32C35.

of (*) such that $\mu(f\xi) = \mu(f)\mu(\xi)$ for all $f \in \mathcal{O}$ and $\xi \in \mathcal{O} \oplus \mathcal{E}$, then μ extends to an isomorphism $\Lambda \mathcal{E} \simeq \mathcal{A}$. On the other hand, for the sequence

$$0 \to \sum_{i \geq 2} \Lambda^i \mathcal{E} \to \Lambda \mathcal{E} \to \mathcal{O} \oplus \mathcal{E} \to 0,$$

such a splitting surely exists. Thus if $\mathscr{A} \simeq \Lambda \mathscr{E}$, we say that \mathscr{A} is *split*, and if not we say that \mathscr{A} is *nonsplit*.

The idea will be to regard a nonsplit supermanifold as a deformation of a split one. We define the notion of an analytic family of supermanifolds, and show that to any supermanifold (M, \mathcal{A}) there is associated an analytic one parameter family of supermanifolds $(M, \mathcal{A}(z))$, $z \in \mathbb{C}$, such that $\mathcal{A}(0) = \Lambda \mathcal{E}$ and $\mathcal{A}(1) = \mathcal{A}$. We also attach to \mathcal{A} an integer $n(\mathcal{A})$ and an invariant $\Delta \mathcal{A}$, which measure the failure of \mathcal{A} to split. Finally, we prove that under suitable conditions it is possible to construct a supermanifold with a prescribed invariant.

1. Let $\mathscr{Aut} \Lambda \mathscr{E}$ denote the sheaf of parity preserving C-linear algebra automorphisms of $\Lambda \mathscr{E}$. Define $\Lambda^{(k)} \mathscr{E} = \sum_{j \geq k} \Lambda^{j} \mathscr{E}$. If $g: \Lambda \mathscr{E} \to \Lambda \mathscr{E}$ is an automorphism, then g induces an \mathscr{O} -linear automorphism $g': \mathscr{E} \to \mathscr{E}$, by virtue of the identification $\mathscr{E} \simeq \Lambda^{(1)} \mathscr{E} / \Lambda^{(2)} \mathscr{E}$. Denote by $\mathscr{Aut}^+ \Lambda \mathscr{E}$ the subsheaf of automorphisms for which $g' = i\mathscr{A}$.

For k an even integer, let $\mathscr{Der}_k \Lambda \mathscr{E}$ denote the sheaf of derivations which increase degree by k. Let $\mathscr{Der}^{(j)} \Lambda \mathscr{E} = \sum_{j \leqslant 2k \leqslant n} \mathscr{Der}_{2k} \Lambda \mathscr{E}$. For $Y \in \mathscr{Der}^{(0)} \Lambda \mathscr{E}$, let Y_k denote the $\mathscr{Der}_k \Lambda \mathscr{E}$ component of Y. Explicitly, if z^1, \ldots, z^m are coordinates on M and π^1, \ldots, π^n are a basis for \mathscr{E} over \mathscr{O} , then any derivation is uniquely expressible in the form

$$Y = \sum f^{i} \frac{\partial}{\partial z^{i}} + g^{j} \frac{\partial}{\partial \pi^{j}},$$

where f^i and g^j are sections of $\Lambda \mathscr{E}$. Then Y lies in $\mathscr{Der}_k \Lambda \mathscr{E}$ if and only if, for all i and j, $\deg(f^i) = k$ and $\deg(g^j) = k + 1$.

Elements of $\mathcal{D}er^{(2)} \Lambda \mathcal{E}$ are nilpotent, so the power series exp: $\mathcal{D}er^{(2)} \Lambda \mathcal{E} \to \mathcal{A}ut \Lambda \mathcal{E}$ is well defined.

PROPOSITION 1. exp: $\mathcal{D}er^{(2)} \Lambda \mathcal{E} \to \mathcal{A}ut^+ \Lambda \mathcal{E}$ is bijective.

PROOF. For $Y \in \mathcal{D}_{e} \imath^{(2)} \Lambda \mathcal{E}$, it is clear that exp Y induces the identity on \mathcal{E} . On the other hand, for $g \in \mathcal{A} \iota \iota^+ \Lambda \mathcal{E}$, 1 - g is degree increasing and therefore nilpotent, so $\log g$ is well defined and lies in $\mathcal{D}_{e} \imath^{(2)} \Lambda \mathcal{E}$.

Define the *order* of \mathscr{A} , denoted $o(\mathscr{A})$, as the sup of integers $k \leq n+1$ such that $\mathscr{A}/\mathscr{N}^k$ and $\Lambda \mathscr{E}/\Lambda^{(k)}\mathscr{E}$ are isomorphic. Assuming $n \geq 1$, $o(\mathscr{A})$ is at least 2, and is either even or equal to n+1.

Let Ξ be an open cover of M such that, for all $u \in \Xi$, the isomorphism (2) of the definition exists and $\mathscr E$ is trivial over u. $\mathscr A$ is filtered by $\mathscr N$, and the associated graded sheaf is $\Lambda\mathscr E$. For each $u \in \Xi$, an isomorphism $T_u \colon \mathscr A|_u \to \Lambda\mathscr E|_u$ can be chosen in such a way that the associated map of $\mathbb Z$ -graded algebras is the identity. The cocycle $\{T_uT_v^{-1}|u,v\in\Xi\}$ defines $\mathscr A$ up to isomorphism, and it follows that the isomorphism classes of supermanifolds $(X,\mathscr A)$ with underlying $\mathscr O$ -module $\mathscr E$ are in natural 1-1 correspondence with $H^1(M,\mathscr Au\mathscr E^+,\Lambda\mathscr E)$.

PROPOSITION 2. There exists a cocycle $\exp(Y^{uv})$ defining $\mathscr A$ such that, for all $u, v \in \Xi$ and all $j < o(\mathscr A)$, $Y_i^{uv} = 0$.

PROOF. Observe that any automorphism of $\Lambda \mathscr{E}/\Lambda^{(k)}\mathscr{E}$ is determined by its restriction to $\mathscr{O} + \mathscr{E}$. It follows that, for all $u \in \Xi$, the natural map $\mathscr{Aut}^+ \Lambda \mathscr{E}(u) \to \mathscr{Aut}^+(\Lambda \mathscr{E}/\Lambda^{(k)}\mathscr{E})(u)$ is surjective. Denote this map by π . Now choose a cocycle $\exp(Z^{uv})$ defining \mathscr{A} . Then the cocycle $\pi \exp(Z^{uv})$ defines $\mathscr{A}/\mathscr{N}^k$. If $\mathscr{A}/\mathscr{N}^k$ and $\Lambda \mathscr{E}/\Lambda^{(k)}\mathscr{E}$ are isomorphic, there exist automorphisms $\rho^u \in \mathscr{Aut}^+(\Lambda \mathscr{E}/\Lambda^{(k)}\mathscr{E})(u)$ such that

$$\pi \exp(Z^{uv}) = \rho^u (\rho^v)^{-1}.$$

 ρ^u is of the form $\pi \exp(X^u)$, for some $X^u \in \mathcal{D}er^{(2)} \wedge \mathcal{E}(u)$. Then the cocycle

$$\exp(Y^{uv}) = \exp(-X^u)\exp(Z^{uv})\exp(X^v)$$

defines \mathscr{A} and satisfies $Y_j^{uv} = 0$ for $j \leq k$, as desired.

Let $\tau = \exp(Y^{uv})$ be a cocycle with coefficients in $\mathcal{A}u\ell^+ \Lambda \mathcal{E}$. Call τ reduced if τ satisfies the property in Proposition 2.

For all u, v and $w \in \Xi$,

$$\exp(Y^{uv}) = \exp(Y^{uv})\exp(Y^{vw}) = \exp(Y^{uv} + Y^{vw} + \text{commutator terms}).$$

So if τ is reduced, then, for $j < 2o(\mathscr{A})$, Y_j is an additive cocycle. Thus Y determines a class $\omega(\tau) \in H^1(M, \mathscr{D}et^{(o(\mathscr{A}))} \wedge \mathscr{E}/\mathscr{D}et^{(2o(\mathscr{A}))} \wedge \mathscr{E})$.

Denote the group $H^0(M, \mathcal{A}u\ell^+ \Lambda \mathcal{E})$ of global sections of $\mathcal{A}u\ell^+ \Lambda \mathcal{E}$ by $G^+(\Lambda \mathcal{E})$. $G^+(\Lambda \mathcal{E})$ acts on $\mathcal{D}er^{(o(\mathcal{A}))} \Lambda \mathcal{E}/\mathcal{D}er^{(2o(\mathcal{A}))} \Lambda \mathcal{E}$ by conjugation, and one has

PROPOSITION 3. The orbit of $\omega(\tau)$ under the action of $G^+(\Lambda \mathscr{E})$ is an invariant of (M, \mathscr{A}) .

PROOF. Let $\sigma = \exp(X^{uv})$ be another cocycle defining \mathscr{A} . Then there is a 0-cochain Z^u such that $\exp(X^{uv}) = \exp(Z^u)\exp(Y^{uv})\exp(-Z^v)$. If $X_j^{uv} = 0$ for all $j < o(\mathscr{A})$, then it follows by induction on j that $Z_j^u = Z_j^v$ for all u and $v \in \Xi$ and all $j < o(\mathscr{A})$. For $j \ge o(\mathscr{A})$ and $k < 2o(\mathscr{A})$, the Z_j^u terms have no effect on the cohomology class of Y_k . Thus $\omega(\sigma)$ and $\omega(\tau)$ are conjugate under $\exp(Z)$, where Z is defined by $Z|_u = \sum_{2 \le j < o(\mathscr{A})} Z_j^u$.

DEFINITION. Let $\Delta \mathscr{A}$ denote the orbit of $\omega(\tau)$ under $G^+(\Lambda \mathscr{E})$.

THEOREM 1. A splits if and only if $\Delta \mathcal{A} = 0$.

PROOF. Let $\tau = \exp(Y)$ be a reduced cocycle representing \mathscr{A} . If \mathscr{A} splits, then $\tau = 1$, so that $\omega(\tau) = 0$. On the other hand, assume $\omega(\tau) = 0$. Then there is a 0-cochain Z with coefficients in $\mathscr{D}et_{o(\mathscr{A})} \wedge \mathscr{E}$ such that $Y_{o(\mathscr{A})}^{uv} = Z^{u} - Z^{v}$. Set $\sigma^{uv} = \exp(-Z^{u})\tau^{uv}\exp(Z^{v})$. Then $\sigma = \exp(W)$ for some 1-cochain W, σ defines \mathscr{A} , and $W_{j}^{uv} = 0$ for $j \leq o(\mathscr{A})$. Unless $o(\mathscr{A}) = n + 1$, this is a contradiction.

2. A map $\Phi: (M, \mathscr{A}) \to (N, \mathscr{B})$ between two complex supermanifolds is a holomorphic map $\phi: M \to N$ together with a sheaf morphism $\phi': \phi^{-1}\mathscr{B} \to \mathscr{A}$. The notions of tangent space and differential map carry over directly to supermanifolds. For $p \in M$, Φ is called *submersive* at p if $d\Phi_p$ is surjective. If Φ is submersive and if

the dimensions of (M, \mathcal{A}) and (N, \mathcal{B}) are (m_0, m_1) and (n_0, n_1) , respectively, then we must have $n_i \leq m_i$ for i = 0, 1. Moreover, ϕ is submersive. (See [6 and 7] for general background.)

Assume Φ is everywhere submersive. If the odd dimension of \mathscr{A} is 0, then for all $q \in N$, the structure sheaf of the fiber over q is the quotient of $\mathscr{O}_M|_{\phi^{-1}q}$ by \mathscr{I}_q , where \mathscr{I}_q is the ideal whose members vanish along $\phi^{-1}(q)$. In general, however, the nilpotent elements of \mathscr{A} take the value 0 at all points of M, and one does not want the fiber supermanifolds to be devoid of nilpotents. So the procedure for constructing \mathscr{I}_q in general is to start by taking a derivation $X \in \mathscr{D}_{e^1} \mathscr{A}|_p$ and saying X is vertical if X annihilates $\phi'(\phi^{-1}\mathscr{B})|_p$. Then let δ denote the quotient map

$$0 \to \mathcal{N} \to \mathcal{A} \xrightarrow{\delta} \mathcal{O} \to 0.$$

Finally, say f is in $\mathscr{I}_q|_p$ if and only if for all nonnegative integers k and all vertical derivations X_1, \ldots, X_k at $p, \delta \circ X_1 \circ \cdots \circ X_k f$ vanishes along $\phi^{-1}(q)$.

An explicit description of \mathscr{I}_q in terms of local coordinates adapted to Φ reveals that $\mathscr{A}|_{\phi^{-1}q}/\mathscr{I}_q$ is a supermanifold over $\phi^{-1}q$ with dimension $(m_0 - n_0, m_1 - n_1)$. Thus (M, \mathscr{A}) fibers over (N, \mathscr{B}) , and we call (M, \mathscr{A}) an analytic family of supermanifolds parameterized by (N, \mathscr{B}) .

As an example of such a family, consider the action of \mathbb{C} on $\mathscr{Der}^{(0)} \Lambda \mathscr{E}$, given by $z \cdot Y = z^j Y$, $Y \in \mathscr{Der}_{2j} \Lambda \mathscr{E}$. Then \mathbb{C} acts by homomorphisms on $\mathscr{Aut}^+ \Lambda \mathscr{E}$, by $z \exp(Y) = \exp(z \cdot Y)$. This descends to an action of \mathbb{C} on

$$H^1(M, \mathcal{D}er^{(k)} \Lambda \mathcal{E}/\mathcal{D}er^{(l)} \Lambda \mathcal{E})/G^+\Lambda \mathcal{E}, \qquad k < l.$$

THEOREM 2. Let (M, \mathcal{A}) be a supermanifold defined by some $\tau \in H^1(M, \mathcal{A}ut^+ \Lambda \mathcal{E})$. Then the classes $z \cdot \tau$, $z \in \mathbb{C}$, determine an analytic family of supermanifolds parameterized by \mathbb{C} . If we denote the supermanifold on the zth fiber by $\mathcal{A}(z)$, then $\Delta \mathcal{A}(z) = z \cdot \Delta \mathcal{A}$.

PROOF. Represent τ by a cocycle $\exp(Y^{uv})$ defined on an open cover Ξ of M. The \mathscr{O}_M module \mathscr{E} pulls back to an $\mathscr{O}_{M\times C}$ module \mathscr{E}' on $M\times C$, and derivations of $\Lambda\mathscr{E}$ act on $\Lambda\mathscr{E}'$ by ignoring the z coordinate. Thus $z\cdot \tau$ can be regarded as lying in $H^1(M\times C,\mathscr{Aut}^+\Lambda\mathscr{E}')$, and so determines a supermanifold \mathscr{B} on $M\times C$. The projection $\pi\colon M\times C\to C$ induces an injection $\pi^*\colon \pi^{-1}(\mathscr{O}_C)\to \mathscr{O}_{M\times C}\to \Lambda\mathscr{E}'$ on whose image the automorphisms $\exp(zY^{uv})$ act trivially. Thus π^* induces an injection $\pi'\colon \pi^{-1}(\mathscr{O}_C)\to \mathscr{B}$ making $(M\times C,\mathscr{B})$ an analytic family. That the fibers have the desired invariant is a direct verification.

The classical "no obstruction" theorem for deformations of complex structures [5] carries over to the supermanifold case.

PROPOSITION 4. Let $g = \sum_{i \ge 1} g_i$ be a sheaf of **Z**-graded Lie algebras over a space M. Fix positive integers j and k, with $j \le k$. Let Y be a 1-cochain with coefficients in $\sum_{j \le i \le k} g_i$. Set $\exp(Y^{uv})\exp(Y^{vw}) = \exp(Y^{uw} + Z^{uvw})$, and assume that the 2-cochain Z has coefficients in $\sum_{i \ge (k+1)} g_i$. Then Z_{k+1} is a cocycle.

PROOF. This is proved by induction on k-j. Note that Y_j is a cocycle. If k=j, then Z^{uvw} is the (k+1)st component of $\frac{1}{2}[Y^{uv}, Y^{vw}]$, which is easily seen to be a cocycle. Since the proposition is *local*, we may restrict our attention to a neighborhood on which $Y_j^{uv} = X^u - X^v$ for some 0-chain X. If we replace Y by Y', where Y' is defined by

$$\exp(Y'^{uv}) = \exp(-X^u)\exp(Y^{uv})\exp(X^v),$$

then the (k + 1)st component of Z is unchanged, whereas $Y_j' = 0$. Thus the induction proceeds.

From this follows

THEOREM 3. Let k be an even integer, $k \ge 2$. Let V be a finite-dimensional subspace of $H^1(M, \mathcal{Der}^{(k)} \Lambda \mathcal{E}/\mathcal{Der}^{(2k)} \Lambda \mathcal{E})$. Assume $H^2(M, \mathcal{Der}^{(2k)} \Lambda \mathcal{E}) = 0$. Then there is an analytic family of supermanifolds parameterized by V such that, for all $\omega \in V$,

$$\Delta \mathscr{A}(\omega) = G^+(\Lambda \mathscr{E}) \cdot \omega.$$

PROOF. Fix a basis $\omega_1, \ldots, \omega_r$ for V. For $i = 1, \ldots, r$, let Y_j be a cocycle representing ω_j . Now consider the sheaf of **Z**-graded Lie algebras $\mathfrak{g} = \mathbb{C}[z^1, \ldots, z^r] \otimes \mathscr{D}_{ex}^{(k)} \Lambda \mathscr{E}$, with grading inherited from the second factor. To prove the theorem we must find a 1-cochain Y with coefficients in \mathfrak{g} such that

- (i) $Y \equiv \sum z^{j} \otimes Y_{j}$ modulo $\mathscr{D}e^{2k} \wedge \mathcal{E}$, and
- (ii) exp(Y) is a cocycle.

Proposition 4 guarantees that the obstruction to finding this cochain lies in $H^2(M, \mathcal{D}e^{i^{(2k)}}\Lambda \mathcal{E})$, which vanishes. Note that the **Z**-grading on $\mathcal{D}e^{i^{(k)}}\Lambda \mathcal{E}$ allows for a polynomial dependence on V, and thereby circumvents the problem of convergence.

- 3. The same considerations apply to C^{∞} supermanifolds. In that case, $\mathcal{D}er^{(0)} \Lambda \mathcal{E}$ is a fine sheaf, so $\Delta \mathcal{A} = 0$. Therefore, Theorem 1 yields the theorem of Batchelor that all smooth supermanifolds are in fact vector bundles [1]. Also see [3] for the first proof of this result.
- **4.** The conditions in Theorem 3 are easily achieved. For example, if k > n/2, then the hypothesis $H^2(M, \mathcal{D}er^{(2k)} \Lambda \mathscr{E}) = 0$ is vacuous. In fact, the ideal $\mathcal{D}er^{(k)} \Lambda \mathscr{E}$ is abelian, so any class $\omega \in H^1(M, \mathcal{D}er^{(k)} \Lambda \mathscr{E})$ can be exponentiated immediately to determine an isomorphism class of supermanifolds $\exp(\omega) \in H^1(M, \mathcal{A}u\ell^+ \Lambda \mathscr{E})$. This is the sort of example given in [4]. As a further example, suppose \mathscr{E} is free and has rank n. Then

$$\mathscr{D}e^{i(0)} \wedge \mathscr{E} = \wedge^{\text{even}} \mathscr{E} \otimes \Theta + \wedge^{\text{odd}} \mathscr{E} \otimes \mathscr{E}^* = \Theta^r + \mathscr{O}^s$$

where $r = 2^{n-1}$ and $s = n2^{n-1}$ and where Θ is the sheaf of holomorphic vector fields. So if $H^1(M, \Theta + \mathcal{O}) \neq 0$ and $H^2(M, \Theta + \mathcal{O}) = 0$, for instance if M is a Riemann surface of positive genus, then M carries supermanifolds of any order.

REFERENCES

- 1. M. Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979), 329-338.
- 2. F. A. Berezin and D. A. Leites, Supermanifolds, Soviet Math. Dokl. 16 (1975), 1218-1221.
- 3. K. Gawedzki, Supersymmetries—Mathematics of supergeometry, Ann. Inst. H. Poincaré Sect. A (N.S.) 27 (1977), 335-366.

- 4. P. Green, On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), 587-590.
- 5. K. Kodaira, L. Nirenberg and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. 68 (1958), 450-459.
- 6. B. Kostant, *Graded manifolds*, graded Lie theory, and prequantization, Differential Geometric Methods in Mathematical Physics (Proc. Sympos. Univ. Bonn, Bonn, 1975), Lecture Notes in Math., vol. 570, Springer-Verlag, Berlin, 1977, pp. 177–306.
 - 7. D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 1-64.
 - 8. I. B. Penkov, D-modules on supermanifolds, Invent. Math. 71 (1983), 501-512.
- 9. A. Salam and J. Strathdee, Superfields and Fermi-Bose symmetry, Phys. Rev. D (3) 11 (1975), 1521-1535.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195