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DEFORMATIONS OF COMPLEX SUPERMANIFOLDS
MITCHELL J. ROTHSTEIN

ABSTRACT. The supermanifold analogue of the Kodaira-Nirenberg-Spencer existence
theorem for deformations of complex structures is given. It is shown that every
complex supermanifold is a deformation of a vector bundle.

0. Supermanifolds, first used by physicists for modelling quantum gravity, have
emerged as objects of independent interest. This paper will concentrate on super-
manifolds with a complex structure, though the results also yield a simple and
transparent proof of the fact that any supermanifold with only its C* structure is
the sheaf of sections of a vector bundle [1].

Let X be a complex manifold, with sheaf of holomorphic functions @. Let & be a
locally free sheaf of ¢-modules. Then A&, the sheaf of exterior algebras of & over 0,
is an example of a complex supermanifold. A& is, among other things, a sheaf of
supercommutative algebras. This means that A&is Z ,-graded and ab = (—1)!"1“lpa
for a and b of definite parity. A& is also a sheaf of ¢-modules, and a sheaf of
Z-graded algebras, but for supersymmetry one is concerned only with the Z,-grad-
ing. This leads to the following more general definition:

DEFINITION. A complex supermanifold of dimension (m, r) is a sheaf (M, &) of
supercommutative algebras over C such that

1) (M, &/#") is an m-dimensional complex manifold. (4" is the ideal of
nilpotent elements of «7.)

(2) The sheaves (M, /) and (M, AC" ® «Z/A4") are locally isomorphic as sheaves
of Z ,-graded commutative algebras over C.

Set O = oZ/ N and & = N/ A"%. Then €is an O-module, and it follows from (2) that
&is locally free. That is, &is the sheaf of sections of a holomorphic vector bundle. By
writing Z/.4"? as the direct sum of its even and odd parts, one obtains an exact
sequence of sheaves of vector spaces

(%) 0> N2l > 00 & 0.

If there is a splitting
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of (x) such that u(f§) = u(f)H)p(é) forall f € Oand £ € O ® &, then p extends to an
isomorphism A& = /. On the other hand, for the sequence
0> Y ANE->AE> O E— O,
=2
such a splitting surely exists. Thus if &/ = A&, we say that #is split, and if not we
say that.«Zis nonsplit.

The idea will be to regard a nonsplit supermanifold as a deformation of a split
one. We define the notion of an analytic family of supermanifolds, and show that to
any supermanifold (M, &) there is associated an analytic one parameter family of
supermanifolds (M, #/(z)), z € C, such that &/(0) = A& and &/(1) = &/. We also
attach to.Zan integer n(%/) and an invariant A &/, which measure the failure of &7to
split. Finally, we prove that under suitable conditions it is possible to construct a
supermanifold with a prescribed invariant.

1. Let &«¢ A& denote the sheaf of parity preserving C-linear algebra automor-
phisms of A& Define AX¢ =X, A/€. If g: A& > A&is an automorphism, then g
induces an (-linear automorphism g’: & — &, by virtue of the identification & =
ADE/APE. Denote by Z«¢" A & the subsheaf of automorphisms for which g’ = /.

For k an even integer, let 2, A& denote the sheaf of derivations which increase
degree by k. Let Dea) A6 =L, 54, Dety AE. For Y € 24 A&, let Y, denote
the D¢, A& component of Y. Explicitly, if z!,...,z™ are coordinates on M and

w!,...,m" are a basis for & over 0, then any derivation is uniquely expressible in the
form
.0 . d
Y= f—+ g/ —o
M iy

where f/ and g/ are sections of A&. Then Y lies in Qe+, A& if and only if, for all i
and j, deg(f') = k and deg(g’) = k + 1.

Elements of 2.2® A & are nilpotent, so the power series exp: D@ AE > Lué AE
is well defined.

PROPOSITION 1. exp: De2® A& — Aut™ A& is bijective.

PROOF. For Y € 2.:® A&, it is clear that exp Y induces the identity on &. On the
other hand, for g € #«¢* A&, 1 — gis degree increasing and therefore nilpotent, so
log g is well defined and lies in Z¢2® A&.

Define the order of o7, denoted o(.«/), as the sup of integers k < n + 1 such that
L/ Nk and A&/ APE are isomorphic. Assuming n > 1, o( %) is at least 2, and is
either even or equal ton + 1.

Let = be an open cover of M such that, for all ¥ € =, the isomorphism (2) of the
definition exists and &'is trivial over u. #/is filtered by A", and the associated graded
sheaf is A&. For each u € =, an isomorphism 7,: &/|, = A&, can be chosen in
such a way that the associated map of Z-graded algebras is the identity. The cocycle
{T, T, "|u, v € Z} defines Zup to isomorphism, and it follows that the isomorphism
classes of supermanifolds (X, /) with underlying ¢(-module & are in natural 1-1
correspondence with HY((M, Z«¢* A&).
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PROPOSITION 2. There exists a cocycle exp(Y"“’) defining o/ such that, for all
u,v € Eandallj < o(), Y* = 0.

PROOF. Observe that any automorphism of A&/AX’&is determined by its restric-
tion to 0+ &. It follows that, for all u € =, the natural map L«¢t A& (u) »
Lt (AE/ NP u) is surjective. Denote this map by 7. Now choose a cocycle
exp(Z“’) defining .. Then the cocycle 7 exp(Z“’) defines &2/ A . If o/ A% and
A&E/ANRE are isomorphic, there exist automorphisms p* € s (AE/ARE) u)
such that

mexp(Z*) = p“(p") .
p“is of the form 7 exp( X*), for some X* € D2 A&(u). Then the cocycle
exp(Y“) = exp(— X*)exp(Z*)exp( X*)

defines «/and satisfies Y;** = 0 for j < k, as desired.

Let 7 = exp(Y *’) be a cocycle with coefficients in &/«¢" A&. Call 7 reduced if 7
satisfies the property in Proposition 2.

Forallu,vandw € Z,

exp(Y“*) = exp(Y*)exp(Y") = exp(Y*’ + Y** + commutator terms).

So if 7 is reduced, then, for j < 20(%/), Y, is an additive cocycle. Thus Y determines
aclass w(7) € H (M, Des' ) AE/Der 2o AE).

Denote the group H( M, Z«¢ A&) of global sections of Z«¢" AEby GH(AE).
G*(A&) acts on Des ) AE/Der?°(¥) A &by conjugation, and one has

PROPOSITION 3. The orbit of w(1) under the action of G*(A&) is an invariant of
(M, ).

PROOF. Let o = exp(X*“’) be another cocycle defining /. Then there is a
0-cochain Z* such that exp(X*“’) = exp(Z“)exp(Y “")exp(—Z*). If X** = 0 for all
J < o(«), then it follows by induction on j that Z = Z; for all u and v € = and all
J <o(). For j > o(«) and k < 20(), the Z! terms have no effect on the
cohomology class of Y,. Thus w(o) and w(7) are conjugate under exp(Z), where Z
is defined by Z|, = X, ;. () Z/"

DEFINITION. Let A o/ denote the orbit of w(7) under G*(A&).

THEOREM 1. &Zsplits if and only if A/ = 0.

PROOF. Let 7 = exp(Y) be a reduced cocycle representing 7. If . splits, then
T =1, so that w(7) = 0. On the other hand, assume w(7)= 0. Then there is a
0-cochain Z with coefficients in De2, ) A& such that Y, = Z* — Z". Set 6’ =
exp(—Z*)7r*’exp(Z"). Then o = exp(W) for some 1-cochain W, o defines &/, and
W“* = 0forj < o(&). Unless o() = n + 1, this is a contradiction.

2. A map ®: (M, Z)— (N, #) between two complex supermanifolds is a
holomorphic map ¢: M — N together with a sheaf morphism ¢": ¢ % — /. The
notions of tangent space and differential map carry over directly to supermanifolds.
For p € M, ® is called submersive at p if d®, is surjective. If @ is submersive and if
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the dimensions of (M, &) and (N, #) are (m, m,) and (n,, n,), respectively, then
we must have n;, < m, for i = 0,1. Moreover, ¢ is submersive. (See [6 and 7] for
general background.)

Assume ® is everywhere submersive. If the odd dimension of «/is 0, then for all
g € N, the structure sheaf of the fiber over g is the quotient of 0,|,-1, by £, where
4, is the ideal whose members vanish along ¢ !(g). In general, however, the
nilpotent elements of &7 take the value 0O at all points of M, and one does not want
the fiber supermanifolds to be devoid of nilpotents. So the procedure for construct-
ing £, in general is to start by taking a derivation X € Y¢2 /|, and saying X is
vertical if X annihilates ¢'(¢~'®)| - Then let § denote the quotient map

8
0> N> 0> 0.

Finally, say fis in £ , if and only if for all nonnegative integers k and all vertical
derivations X;,...,X, atp,8¢ X;o --- o X, f vanishes along ¢ "(g).

An explicit description of £, in terms of local coordinates adapted to @ reveals
that &/|,-,/#, is a supermanifold over ¢~ '¢ with dimension (m, — ng, m; — ny).
Thus (M, &) fibers over (N, #), and we call (M, &) an analytic family of
supermanifolds parameterized by (N, %#).

As an example of such a family, consider the action of C on Z¢2® A&, given by
z-Y=2Y, YEDer,,A6. Then C acts by homomorphisms on &«¢" A&, by
zexp(Y) = exp(z - Y). This descends to an action of C on

HY (M, 2ed'®) A6/ Ded" AE)/GYAE, k<.

THEOREM 2. Let (M, &) be a supermanifold defined by some T €
HY (M, /ut* NE). Then the classes z - T, z € C, determine an analytic family of
supermanifolds parameterized by C. If we denote the supermanifold on the zth fiber by
H(z), then Al (z) =z - AA.

PrROOF. Represent 7 by a cocycle exp(Y “’) defined on an open cover = of M. The
0,, module & pulls back to an 0,,, - module & on M X C, and derivations of A& act
on A&’ by ignoring the z coordinate. Thus z - 7 can be regarded as lying in
HY (M X C, Z«¢* A&’), and so determines a supermanifold 4 on M X C. The
projection m: M X C — C induces an injection 7*: 7~ (0c) = O c = A&’ on
whose image the automorphisms exp(zY*“’) act trivially. Thus #* induces an
injection 7": = }(0c) > % making (M X C, #) an analytic family. That the fibers
have the desired invariant is a direct verification.

The classical “no obstruction” theorem for deformations of complex structures [5]
carries over to the supermanifold case.

PROPOSITION 4. Let ¢ = X, , g, be a sheaf of Z-graded Lie algebras over a space M.
Fix positive integers j and k, with j < k. Let Y be a 1-cochain with coefficients in
Yicick 8, Set exp(Y“)exp(Y*™) = exp(Y " + Z**™), and assume that the 2-cochain
Z has coefficients in X, 11, 8;- Then Z, ., is a cocycle.
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PROOF. This is proved by induction on k — ;. Note that Y} is a cocycle. If k = j,
then Z“** is the (k + 1)st component of i[Y“’, Y"*], which is easily seen to be a
cocycle. Since the proposition is local, we may restrict our attention to a neighbor-
hood on which Y** = X* — X" for some 0-chain X. If we replace Y by Y’, where Y’
is defined by

exp(Y"") = exp(— X “)exp(Y**)exp( X*),
then the (k + 1)st component of Z is unchanged, whereas Y’ = 0. Thus the
induction proceeds.

From this follows

THEOREM 3. Let k be an even integer, k > 2. Let V be a finite-dimensional subspace
of HY(M, DerFNE/Der®™ AE). Assume H* (M, Der®*) A&) = 0. Then there is an
analytic family of supermanifolds parameterized by V such that, for all w € V,

A (w) =G (Af) - w.

PROOF. Fix a basis wy,...,w, for V. Fori =1,...,r, let ¥, be a cocycle represent-
ing w,. Now consider the sheaf of Z-graded Lie algebras g = ClzL....2"]®
Der®) A&, with grading inherited from the second factor. To prove the theorem we
must find a 1-cochain Y with coefficients in g such that

() Y = Xz/ ® Y, modulo 2¢2** A&, and

(i1) exp(Y) is a cocycle.

Proposition 4 guarantees that the obstruction to finding this cochain lies in
H*(M, 24 A&), which vanishes. Note that the Z-grading on De2X) A& allows
for a polynomial dependence on V, and thereby circumvents the problem of
convergence.

3. The same considerations apply to C* supermanifolds. In that case, Z¢2¥ A&is
a fine sheaf, so A.«Z = 0. Therefore, Theorem 1 yields the theorem of Batchelor that
all smooth supermanifolds are in fact vector bundles [1]. Also see [3] for the first
proof of this result.

4. The conditions in Theorem 3 are easily achieved. For example, if & > n/2, then
the hypothesis H*(M, D¢+ A€) = 0 is vacuous. In fact, the ideal De2'%) A& is
abelian, so any class w € HY(M, D¢+¥) A&) can be exponentiated immediately to
determine an isomorphism class of supermanifolds exp(w) € H'(M, ut™ AS).
This is the sort of example given in [4]. As a further example, suppose &'is free and
has rank n. Then

Der O ANE= AV"E® O + AR &* = 0" + 0°,
where r = 2""! and s = n2""! and where © is the sheaf of holomorphic vector
fields. So if HY(M,® + 0) # 0 and H*(M,® + 0) = 0, for instance if M is a
Riemann surface of positive genus, then M carries supermanifolds of any order.
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