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SOME SHARP WEAK-TYPE INEQUALITIES FOR

HOLOMORPHIC FUNCTIONS ON THE UNIT BALL OF C"

BOGUSLAW TOMASZEWSKI

Abstract. Let B" = [z e C": ||| < 1}, S" = dB" and let o„ be the Haar measure

on S". Then for all/ e H' (1 « p < oo) such that Im(/(0)) = 0 and t > 0,

a„({zeS":|/(z)|>,})<CvM£

for some constant Cp depending only on p. The best constant Cp is found for

1 « p « 2.

Let C" be an «-dimensional complex space with norm

,2 ,2\l/2t\     l2 l      i2V= (kl + ■•■+kl)

and unit ball /?" = (z G C": ||z|| < 1}. By an we shall denote the rotation-invariant,

normalized Borel measure on S" = dB". We shall write D and T instead of Bl and

S1. For a a„-measurable function/: S" -» C andp > 1, let us define

/

ii/p

frfoL

If II / IL < °° an^ if the Poisson integral P[/] of the function / (see [5, p. 41]) is a

holomorphic function, then we shall write/ g Hp(S"). Kolmogorov proved [4] that

there exists a constant C> 0 such that, if/g H\T) and if/(0) = P[/](0) is real,

then

(1) a1({zGF:|lm/(z)|>r})<C-fe^,

for all t > 0. In other words, the operator Re/ -» Im / is of the weak type 1-1 (see

[7]). The best constant of inequality (1) was found by Davis [3]. Baernstein [2] gave

an elementary proof of inequality (1) with the best constant. His proof was modified

by Tomaszewski [6], who found the best constant in a weak-type inequality for the

operator Re / -» /. In this paper we shall prove similar sharp weak-type inequalities

for spaces HP(S").
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Theorem. 7/1 < p < 2,/ g Hp(S") and Im /(O) = 0, then for all t > 0,

(2) ,„({zer|/(z)|M})<cÄ,

where

= v£    p • r(p/2)

'    2   r((p + i)/2)"

F«e constant C is the best possible in this inequality.

We shall need the following

Lemma. Let up, for 1 < p < 2, fte i«e Poisson integral of the function yp(e") =

|cos t\p defined on T. The inequalities

(i)up(z)<up(0) + \Rez\p,

(ii) 11,(0) < up(x)

hold for z G D and -1 < x < 1.

Proof. Let m^(z) = ReiEJLoa^ ■ z*) for some real numbers a^.. It is easy to see

that a2n + x = 0 for n = 0,1,2,_We shall prove that

(3) (-l)"-a2„<0,

for n = 1,2,_We have

(—1)       z*77 p
(-1)" ■ a2   = -—— •/    |cosi|   -cos2ntdt

1

= — • /     sin r    • cos2nt dt

= - ■ C (1 - cos2 i)'72 • cos2ntdt
"■   •/-Ir

1      °° /•'T 1      °°
= - •   ¿Z bm-       eos2"1 í ■ cos2ni dt = - ■  £ ¿m ■ 72m-2n,

m = l -" m = \

where ¿>m < 0 are real numbers such that (1 - s)p/1 = 1 + L_\x_xbm • sm and /m „ =

/_"„ cos"/ • cosmtdt. Since lmn = \ ■ (Im_x,„_x + Im-Un+X) it can be easily proved

(by induction on m) that Imn S* 0. This ends the proof of inequality (3). Now, let us

note that for z = x + iy G D,

up(z)-up(0)-a2-(x2-y2)

I      OO \ 00

= Re    X>2m-zH<(*2 + v2)-  Z kJ
\m=2 / m=2

= (x2 + y2)-(up(0) - up(i) - a2) = (x2 + y2).^. a2,
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since

an =
_2   r((p + i)/2)-r(i/2)

p-T(p/2)

0 = ^n
a, = — • /     cos t\      dt - 2a   •

TT      J-„

But (2 - p)/2p < 1 and

x2 -((2 - p)/2p) • a2 + x2 ■ a2 = a0 ■ x2 < x2 < xp.

Hence, inequality (i) follows. Let us turn to (ii). For 0 < a < tt/2 let va be the

Poisson integral of the characteristic function, defined on T, of the set {z G T:

|Im z| > sin a). Then

,  ,      1 11 — ia — z — ia\     1 I 1 + iaz + z - ia \
,a(z) = - • Arg^T-—T7T-j + - • Arg^rT—37T-j + 1,

where a = (cos a)/(l + sin a). We see that

1 + 1 « u„(0).
2

"«(■*) = -• Ar8
77

/  1 + X        1 — X
- a2 - ia\--+ ——

1 — x      1 + x

But up(z) = 1 — Jq/2 va(z) dp(a) for some positive measure p (dp(t) = p ■ cos''-11

■ sin t dt). Thus, inequality (ii) follows.

Proof of the Theorem. We shall first prove that equality holds in (2) for inner

functions/: S" -» C such that/(0) = 0 (i.e. functions/g Hp(S") such that | /(z)|

= 1 a.e. on S" and js°f(z) dan(z) - 0). The existence of such functions was proved

by Aleksandrov [1]. If /is inner and/(0) = 0, then

/   h(f(z))don(z)=( h(z)dox(z),

for every continuous function h defined on F(see [5, p. 405]). Taking h(z) = |Re z\p,

we see (2) cannot hold with any constant smaller than the constant Cp defined above.

We shall prove inequality (2) for the case n = 1. For each function/g Hp(S"),

we have

||Re/|£=/    / \RefUz)\Pdox(t)don(z).
JS"  JT

If we now apply the statement of the Theorem, for the case n = 1, to the integrals

/7-|Re/(|z)|/'í/a1(¿), we shall get the general case. Thus, let us assume that

/g HP(T). Let <p: C -» R be a function such that <p(z) = IRez^ for z € D and

<p(z) = up(z) for z G D, where up is defined in the lemma. The function <p is

continuous and since the function |Re z\p is subharmonic, we have <p(z) > |Re z\p for

z g C. It follows that <p is subharmonic on C. Let F={zgF:|/(z)|>1} and let

us define the functions w(z) = P[Xt\e](z)> n(z) = PII^/TK2)» where Xt\e is a

characteristic function of the set E and P denotes the Poisson integral for the unit

disk D. We shall prove that

(4) m(/(z))<M') + <PvO)-<o(z),
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where we write/(z) = P[/](z). It suffices to check this inequality for z G T, since

the function <p ° / is subharmonic and the function h(z) + <p(0) ■ w(z) is harmonic.

If z g T - E, then f(z) g D. Hence, for this case (4) follows from (i) and the

definition of the function h and the function «. If z g E, then <p(f(z)) = \Ref(z)\p

= h(z), and (4) also holds for this case, hence for every z g T. Taking z = 0 in (4)

and applying (ii), we get

?(0) <?(/((>))« A(0) + <p(0) • M(0)

= ||ReF||„ + <p(0) -ax(T- E).

This ends the proof of inequality (2) for the case t = 1, since ax(T - E) = 1 - ax(E)

and cp(0) = up(0) = (Cp)~l. A general case can be proved by considering the

function f/t instead of /.
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