WEIGHTED REVERSE WEAK TYPE INEQUALITIES FOR THE ERGODIC MAXIMAL FUNCTION
 AND THE CLASSES $L \log ^{+} L$

KENNETH F. ANDERSEN ${ }^{1}$ AND WO-SANG YOUNG

Abstract

D. Ornstein proved that the ergodic maximal function satisfies a reverse weak type inequality, and from this he deduced that the integrability of the maximal function f^{*} implies that f belongs to $L \log ^{+} L$. Weighted analogues of these results are proved.

Let (Ω, Σ, μ) denote a probability space and let $T: \Omega \rightarrow \Omega$ be an invertible, measure preserving ergodic transformation. The Maximal Ergodic Theorem asserts that the maximal function f^{*} defined for nonnegative $f \in L^{1}(\mu)$ by

$$
f^{*}(x)=\sup _{m, n \geqslant 0} \frac{1}{m+n+1} \sum_{k=-m}^{n} f\left(T^{k} x\right), \quad x \in \Omega,
$$

satisfies the weak type inequality

$$
\mu\left\{x: f^{*}(x)>\lambda\right\} \leqslant \lambda^{-1} \int_{\left\{x: f^{*}(x)>\lambda\right\}} f(x) d \mu(x) \leqslant \lambda^{-1} \int_{\Omega} f(x) d \mu(x)
$$

for all $\lambda>0$. On the other hand, D. Ornstein [6] has shown that f^{*} also satisfies the reverse weak type inequality

$$
\mu\left\{x: f^{*}(x)>\lambda\right\} \geqslant(2 \lambda)^{-1} \int_{\left\{x: f^{*}(x)>\lambda\right\}} f(x) d \mu(x)
$$

for all λ such that $\mu\left\{x: f^{*}(x)>\lambda\right\}<1$; in particular, this is the case if $\lambda>\lambda_{f}=$ $\int_{\Omega} f(x) d \mu(x)$. From this he deduced that if f^{*} is integrable then f belongs to the class $L \log ^{+} L$. For elementary proofs of these results see the recent papers of R. L. Jones [$\mathbf{3}$ and 4]. The purpose of this paper is to prove the following weighted version of Orstein's result.

Theorem. Suppose u and v are nonnegative measurable functions on Ω with $u \in L^{1}(\mu)$. The following statements are equivalent:
(i) There is a constant C independent of f such that

$$
\begin{equation*}
\int_{\left\{x: f^{*}(x)>\lambda\right\}} u(x) d \mu(x) \geqslant(C \lambda)^{-1} \int_{\left\{x: f^{*}(x)>\lambda\right\}} f(x) v(x) d \mu(x) \tag{1}
\end{equation*}
$$

holds for all λ such that $\mu\left\{x: f^{*}(x)>\lambda\right\}<1$.

Received by the editors December 18, 1984.
1980 Mathematics Subject Classification. Primary 28D05; Secondary 42B25.
Key words and phrases. Maximal functions, ergodic maximal function, weighted inequalities, $L \log ^{+} L$.
${ }^{1}$ Research supported in part by NSERC grant A-8185.
(ii) There is a constant D such that

$$
\begin{equation*}
v(x) \leqslant D \frac{1}{2 n+1} \sum_{k=-n}^{n} u\left(T^{k} x\right) \tag{2}
\end{equation*}
$$

holds for all $n \geqslant 0$ and almost all $x \in \Omega$.
Corollary. Suppose u and v satisfy (2) and that $\int_{\Omega} f^{*}(x) u(x) d \mu(x)<\infty$. Then f satisfies

$$
\int_{\Omega}\left[f(x) \log ^{+} f(x)\right] v(x) d \mu(x)<\infty .
$$

An analogue of the Theorem for the Hardy-Littlewood maximal function in R^{n} was recently obtained by B. Muckenhoupt [5].

Examples of weight function pairs which satisfy (2) may be constructed as follows. A nonnegative weight function ω is said to satisfy the A_{1} condition $[2,7]$ if there is a constant C such that $\omega^{*}(x) \leqslant C \omega(x)$ a.e. in Ω. If $g \in L^{1}$ and $0<\delta<1$, it is shown in [7] that $\omega(x)=g^{*}(x)^{\delta}$ belongs to A_{1}. Now if ω belongs to A_{1}, the Schwarz inequality for sums shows that

$$
\begin{aligned}
(2 n+1)^{2} & \leqslant\left\{\sum_{k=-n}^{n} \omega\left(T^{k} x\right)\right\}\left\{\sum_{k=-n}^{n} 1 / \omega\left(T^{k} x\right)\right\} \\
& \leqslant(2 n+1) \omega^{*}(x)\left\{\sum_{k=-n}^{n} 1 / \omega\left(T^{k} x\right)\right\} \\
& \leqslant C(2 n+1) \omega(x)\left\{\sum_{k=-n}^{n} 1 / \omega\left(T^{k} x\right)\right\}
\end{aligned}
$$

Thus (2) is satisfied if $u(x)=v(x)=1 / \omega(x)$.
Let Z denote the set of integers and, for any finite subset I of Z, let $|I|$ denote its cardinality. If I consists of finitely many consecutive integers we say that I is an interval. If I is an interval, we write $2 I$ for the largest interval containing I in its center and satisfying $|2 I| \leqslant 2|I|$. Thus $2 I$ is obtained by adjoining to I two intervals (possibly empty) of equal cardinality, one of which immediately precedes and one of which immediately succeeds I. As usual, if E is any set, $\chi_{E}(x)$ denotes the characteristic function of E.

We need the following lemma.
Lemma. Let I be an interval in Z and let J denote the complement of I in Z. Then I is the union of N pairwise disjoint intervals I_{j} which satisfy
(i) $\left|I_{j}\right| / 2 \leqslant \operatorname{dist}\left(I_{j}, J\right) \leqslant 4\left|I_{j}\right|, 1 \leqslant j \leqslant N$,
(ii) $\sum_{j} \chi_{2 I_{j}}(n) \leqslant 4 \chi_{I}(n)$ for all $n \in Z$.

Proof of the Lemma. Suppose $|I|>2$. Otherwise the Lemma is trivially satisfied by choosing intervals I_{j}, each consisting of one integer. Let I_{1} be the largest interval centered in I with $\left|I_{1}\right| \leqslant|I| / 2$. Then $I \backslash I_{1}$ consists of two intervals, say I^{\prime} and $I^{\prime \prime}$ with $\left|I^{\prime}\right|=\left|I^{\prime \prime}\right| \geqslant|I| / 4$. We shall show that I^{\prime} is a union of pairwise disjoint intervals $I_{j}, j=2, \ldots, N^{\prime}$, such that (i) holds. If $\left|I^{\prime}\right| \leqslant 2$ we may write I^{\prime} as a union
of intervals each consisting of one integer and our selection procedure terminates; otherwise I^{\prime} is the union of two intervals I_{-}^{\prime} and I_{+}^{\prime} with $d\left(I_{-}^{\prime}, J\right)=1$ and $\left|I_{+}^{\prime}\right|-1 \leqslant\left|I_{-}^{\prime}\right| \leqslant\left|I_{+}^{\prime}\right|$. Then I_{+}^{\prime} is the union of two intervals I_{2} and I_{3} satisfying $\left|I_{2}\right|-1 \leqslant\left|I_{3}\right| \leqslant\left|I_{2}\right|$ and $\operatorname{dist}\left(I_{3}, I_{-}^{\prime}\right)=1$. Clearly, (i) is satisfied for $j=2,3$. This selection procedure is now repeated with I_{-}^{\prime} in place of I^{\prime} and, continuing in this way, I^{\prime} is eventually exhausted by the intervals $I_{j}, j=2, \ldots, N^{\prime}$. It is easy to see that any element of I belongs to at most 3 of the intervals $2 I_{j}, 2 \leqslant j \leqslant N^{\prime}$, and that all such $2 I_{j}$ are disjoint from $I^{\prime \prime}$. A similar construction is applied to express $I^{\prime \prime}$ as a union of intervals $I_{j}, j=N^{\prime}+1, \ldots, N$. The intervals $I_{j}, j=1, \ldots, N$, so constructed clearly satisfy (ii).

Proof of the Theorem. Suppose that (1) holds. We will show that (2) holds with $D=2 C$. Let $A \in \Sigma$ with $0<\mu(A)<1 / 2$. Then $\left(\chi_{A}\right)^{*}(x)<1$ if $x \notin A$, so the theorem of dominated convergence together with (1) shows

$$
\begin{aligned}
\int_{A} u(x) d \mu(x) & =\lim _{\lambda \rightarrow 1-} \int_{\left\{x:\left(\chi_{A}\right)^{*}(x)>\lambda\right\}} u(x) d \mu(x) \\
& \geqslant \lim _{\lambda \rightarrow 1-} \frac{1}{C \lambda} \int_{\left\{x:\left(x_{A}\right)^{*}(x)>\lambda\right\}} \chi_{A}(x) v(x) d \mu(x) \\
& =\frac{1}{C} \int_{A} v(x) d \mu(x) .
\end{aligned}
$$

Since A is arbitrary, this shows that $u(x) \geqslant v(x) / C$ a.e. Thus (2) holds with $D=2 C$ for the case $n=0$. Now let $n \geqslant 1$. If $A \in \Sigma$ with $\mu(A)>0$ there is a subset B of A with $\mu(B)>0$ such that $T^{j}(B), j=-n, \ldots, n$, are pairwise disjoint. If $x \notin$ $\bigcup_{j=-n}^{n} T^{j}(B)$, then any 1 which occurs in the sequence $\chi_{B}\left(T^{k} x\right)$ is both followed and preceded by at least n consecutive zeros; furthermore, $\chi_{B}\left(T^{k} x\right)=0$ for $-n \leqslant k \leqslant n$. For such x it then follows that $\left(\chi_{B}\right)^{*}(x) \leqslant 1 /(n+1)$ and hence $\left\{x:\left(\chi_{B}\right)^{*}(x)>\right.$ $1 /(n+1)\}$ is a subset of $\bigcup_{j=-n}^{n} T^{j}(B)$. Thus, (1) implies

$$
\begin{aligned}
\int_{B} \sum_{j=-n}^{n} u\left(T^{j} x\right) d \mu(x) & =\int_{\bigcup_{j--n}^{n} T^{j}(B)} u(x) d \mu(x) \\
& \geqslant \int_{\left\{x:\left(\chi_{B}\right)^{*}(x)>1 /(n+1)\right\}} u(x) d \mu(x) \\
& \geqslant \frac{n+1}{C} \int_{\left\{x:\left(\chi_{B}\right)^{*}(x)>1 /(n+1)\right\}} \chi_{B}(x) v(x) d \mu(x) \\
& =\frac{n+1}{C} \int_{B} v(x) d \mu(x) .
\end{aligned}
$$

Since A was arbitrary, it follows that (2) holds with $D=2 C$ for $n \geqslant 1$.
Suppose now that (2) holds. We will show that (1) holds with $C=20 D$.
Observe first that if I is any interval, then (2) implies that

$$
\begin{equation*}
\sum_{j \in 2 I} u\left(T^{j} x\right) \geqslant D^{-1}|I| v\left(T^{k} x\right) \quad \text { a.e. } \tag{3}
\end{equation*}
$$

for all $k \in I$.

Let $\lambda>\lambda_{f}$ and $E=\left\{x: f^{*}(x)>\lambda\right\}$. Since T is ergodic it follows that for almost all $x \in E$ there are positive integers $r=r(x)$ and $s=s(x)$ such that $T^{j} x \in E$ if $-r+1 \leqslant j \leqslant s-1$ but $T^{j} x \notin E$ for $j=-r$ and $j=s$. For each positive integer i let $R_{i}=\bigcup_{j=0}^{i-1} T^{j}\left(B_{i}\right)$ where $B_{i}=\{x \in E: r(x)=1$ and $s(x)=i\}$. Then $\left\{R_{i}\right\}$ is a sequence of pairwise disjoint subsets of E, and for almost all $x \in E$ there is i, namely $i=r(x)+s(x)-1$, such that $x \in R_{i}$. Thus, $E=\cup_{i=1}^{\infty} R_{i}$ and

$$
\begin{equation*}
\int_{E} f(x) v(x) d \mu(x)=\sum_{i=1}^{\infty} \sum_{j=0}^{i-1} \int_{B_{i}} f\left(T^{j} x\right) v\left(T^{j} x\right) d \mu(x) \tag{4}
\end{equation*}
$$

Let i be fixed and let I_{j} denote the intervals generated by the Lemma for the interval $I=\{0, \ldots, i-1\}$. Then (3) shows that

$$
\begin{align*}
\sum_{j=0}^{i-1} f\left(T^{j} x\right) v\left(T^{j} x\right) & =\sum_{j} \sum_{k \in I_{j}} f\left(T^{k} x\right) v\left(T^{k} x\right) \tag{5}\\
& \leqslant \sum_{j} \sum_{k \in I_{j}} f\left(T^{k} x\right)\left(D\left|I_{j}\right|^{-1} \sum_{m \in 2 I_{j}} u\left(T^{m} x\right)\right) .
\end{align*}
$$

Now part (i) of the Lemma shows that for each j there is an interval K_{j} with $\left|K_{j}\right| \leqslant 5\left|I_{j}\right|$ containing I_{j} and either -1 or i. Since neither $T^{-1} x$ nor $T^{i} x$ belongs to E, it follows that

$$
\sum_{k \in I_{j}} f\left(T^{k} x\right) \leqslant \sum_{k \in K_{j}} f\left(T^{k} x\right) \leqslant\left|K_{j}\right| \lambda \leqslant 5\left|I_{j}\right| \lambda
$$

Using this on the right side of (5) shows, together with (ii) of the Lemma, that

$$
\sum_{j=0}^{i-1} f\left(T^{j} x\right) v\left(T^{j} x\right) \leqslant 5 D \lambda \sum_{j} \sum_{m \in 2 I_{j}} u\left(T^{m} x\right) \leqslant 20 D \lambda \sum_{m=0}^{i-1} u\left(T^{m} x\right)
$$

and, hence,

$$
\begin{aligned}
\int_{R_{i}} f(x) v(x) d \mu(x) & =\sum_{j=0}^{i-1} \int_{B_{i}} f\left(T^{j} x\right) v\left(T^{j} x\right) d \mu(x) \\
& \leqslant 20 D \lambda \sum_{m=0}^{i-1} \int_{B_{i}} u\left(T^{m} x\right) d \mu(x)=20 D \lambda \int_{R_{i}} u(x) d \mu(x) .
\end{aligned}
$$

In view of (4), summing this over the index i yields (1) with $C=20 D$.
Proof of the Corollary. Observe first that (2) implies $v(x) \leqslant D u(x)$ a.e. and thus we have

$$
\begin{align*}
\int_{\Omega} f(x) v(x) d \mu(x) & \leqslant \int_{\Omega} f^{*}(x) v(x) d \mu(x) \tag{6}\\
& \leqslant D \int_{\Omega} f^{*}(x) u(x) d \mu(x)<\infty
\end{align*}
$$

Now if $\lambda>\lambda_{f}$ then $\mu\left\{x: f^{*}(x)>\lambda\right\}<1$, so (1) shows that

$$
\int_{\Omega}\left[f(x) \log ^{+}\left(\frac{f(x)}{\lambda_{f}}\right)\right] v(x) d \mu(x)=\int_{\lambda_{f}}^{\infty} \frac{d \lambda}{\lambda} \int_{\{x: f(x)>\lambda\}} f(x) v(x) d \mu(x)
$$

is bounded above by

$$
C \int_{\lambda_{f}}^{\infty} d \lambda \int_{\left\{x: f^{*}(x)>\lambda\right\}} u(x) d \mu(x) \leqslant C \int_{\Omega} f^{*}(x) u(x) d \mu(x)<\infty
$$

and this, together with (6), shows that

$$
\int_{\Omega}\left[f(x) \log ^{+} f(x)\right] v(x) d \mu(x)<\infty .
$$

References

1. K. F. Andersen and W.-S. Young, On the reverse weak type inequality for the Hardy maximal function and the weighted classes $L(\log L)^{k}$, Pacific J. Math. 112 (1984), 257-264.
2. E. Atencia and A. de la Torre, A dominated ergodic estimate for L^{p} spaces with weights, Studia Math. 74 (1982), 35-47.
3. R. L. Jones, Ornstein's $L \log ^{+} L$ theorem, Proc. Amer. Math. Soc. 91 (1984), 262-264.
4. \qquad , New proofs for the maximal ergodic theorem and the Hardy-Littlewood maximal theorem, Proc. Amer. Math. Soc. 87 (1983), 681-684.
5. B. Muckenhoupt, Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function, Pacific. J. Math. 117 (1985), 371-377.
6. D. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79.
7. A. de la Torre, B. M.O. and the ergodic maximal function, Preprint, 1984.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

