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EXAMPLES OF COMPACT NON-KÄHLER
ALMOST KAHLER MANIFOLDS

LUIS A. CORDERO, M. FERNANDEZ AND MANUEL DE LEON

ABSTRACT. A parametrized family of compact non-Kähler almost Kahler

manifolds Ai2r+2, r > 1, is constructed. For r odd, these manifolds Eire shown

to have odd first Betti number, so they cannot be Kählerian.

Introduction. Few examples, compact or not, of non-Kähler almost Kahler

manifolds are known. In fact, for the noncompact case only the tangent bundle

(and some related tensor bundles) of nonflat Riemannian manifolds were known

to admit such structure until B. Watson's report [10] of a large family of other

noncompact examples; in 1976, W. P. Thurston [9] reported the existence of a

compact manifold M4, defined as a 2-torus bundle over a 2-torus, which possesses

an almost Kahler structure but does not admit any Kählerian structure (an explicit

description ofthat structure is given in [1]), and again B. Watson constructed more

examples of this kind by considering products (M4 x S1) X (M4 x S1) x • • •; as far

as we know, no more examples are known in the literature.

In the present paper, a large family of compact almost Kahler manifolds M2r+2,

r > 1, which are non-Kähler, is constructed. Indeed, M2t+2 is firstly obtained as

a compact complete locally affine manifold (Theorem 1.3), and this fact allows an

easy computation of its first Betti number; secondly, M2r+2 is also described as an

(r+ l)-torus bundle over an (r+ l)-torus, extending in this way Thurston's example

to higher dimensions; and thirdly, we consider M2r+2 as a quotient of H(l, r) x S1

by a discrete subgroup, where H(l,r) is a generalized Heisenberg group, and then

we construct the almost Kahler structure on it as in Abbena's approach (which

corresponds to the value r = 1); finally, we compute the curvature, the Ricci, the

*-Ricci and the torsion tensors of the structure to check whether some identities,

holding for a Kählerian structure, are verified here. Summing up, we have the

following:

(1) For r odd, M2r+2 has an almost Kahler metric and, since its first Betti

number is also odd (Corollary 1.4), it does not admit any Kählerian metric.

(2) For r even, M2r+2 has an almost Kählerian metric, and this particular metric

is not Kählerian.

1. Compact quotients of the generalized Heisenberg group. The gen-

eralized Heisenberg group H(l,r), r > 1, is the Lie group of real matrices of the
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form

where P and T both are (r x l)-column matrices, Q G R. H(l,r) is easily shown

to be a connected and simply-connected two-step nilpotent Lie group of dimension

2r + l.
Indeed, H(l, r) is canonically diffeomorphic to it2r+1 through the map i¡j: R2r+1

—» H(l,r) given by

(1.1)

where

X
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Alternatively, H(l, r) can be seen as a Lie subgroup of A(2r + 1), the Lie group

of affine transformations of i22r+1, as follows: let Go(l,r) C A(2r + 1) be the group

of affine transformations of R2r+1 determined by

G0(l,r)

f B\
C
Di

[DrJ

B&RrXl

D = (D1,.

CGR
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and denote (B,C,D) a generic element in Go(l,r); then (f>:Gr,(l,r)

defined by

ÍL     -*D   b\

H(l,r)

(1.2) <p(B,C,D) = 1

0

is an isomorphism of Lie groups. In fact, the following diagram commutes:

G0(l,r) x R2r+1     %    R2r+1

(1.3) 0x^1 |V

H(l,r) X H(l,r)     PA     H(l,r)

where pi (resp. P2) denotes the action of Go(l,r) onto R2r+1 (resp. of H(l,r) onto

itself).
Let To C Go(l,r) be the Lie subgroup of Gn(l,r) of those elements (B,C,D)

with B e Zr, C, Di e Z, i — 1,2,..., r. Then, To is a discrete uniform subgroup of

C7n(l,r) [6] and, therefore, the quotient manifold i?2r+1/ro is a compact complete

locally affine manifold [2] whose fundamental group is isomorphic to Tn. Therefore,

T — 4>(T0) C H(l,r) is the discrete subgroup of H(l,r) of matrices with integer

entries and, by virtue of (1.3), we deduce the following.
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THEOREM l.l. Leí r be the discrete subgroup ofH(l,r) of matrices with inte-

ger entries. Then the quotient manifold M2r+1 = H(l,r)/T is a compact complete

locally affine manifold whose fundamental group 7Ti(M2r+1) is isomorphic to T.

From the Hurewicz Theorem we know that Hi(M2r+1) ^ r/[r,r], [r,T] being

the commutator subgroup of T, hence the first Betti number ¿>i(M2r+1) can be

easily computed. Firstly, we remark that T is a non-Abelian free group of 2r + 1

generators, namely

fir    \i\    0
0      10 1,0

V°      °     V

( Ir      0     (T
0        1      1   |

0     0    1

where |i| denotes the (r x l)-column matrix with 1 at the ¿th row. Then, a direct

computation leads to the following relations:

a¿a.,ü!¿ 1aJ-1 = 1,

ßliß-1!'1 = L

Hljlí1!}1 = L
a   -1/3-1

so r/[r, r] is isomorphic to the Abelian free group of r+1 generators, and we prove

the following

THEOREM 1.2.   Hi(M2r+1)^(Br+1Z, and hence bi(M2r+1) = r+l.

Next, let us consider the product manifold M2r+2 = M2r+1 x S1; then, we can

THEOREM 1.3. M2r+2 is also a compact complete locally affine manifold;

that is, there is a discrete uniform subgroup ín of A(2r + 2) such that M2r+2 =

R2r+2/f0.

PROOF. Let R be considered as Abelian Lie group, and then consider the prod-

uct Lie groups G0 = Go(l,r) x R c A(2r + 2) and H(l,r) x R. Then, <p given

by (1.2) and ip given by (1.1) extend to <f>:Go —► H(l,r) X R, isomorphism of Lie

groups, and to i¡>: R2r+2 —► H(l,r) x R, diffeomorphism of manifolds, in such way

that a commutative diagram similar to (1.3) still holds. Finally, it suffices to set

fn = To x Z to finish the proof of the theorem.

Corollary 1.4. 61(M2r+2) =r + 2.

At this point, let us remark that M4 — (H(l, 1)/T) X S1 is nothing but Thurs-

ton's famous example of a compact symplectic non-Kähler manifold, as consid-

ered by E. Abbena [1]. Indeed, for r > 1, M2r+2 is the natural generalization of

Thurston's example to higher dimensions, since it can be seen as the bundle space

of a torus bundle over a torus.
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Let p:®r+1 Z —> Diff(T'"+1) be the representation defined by

p(l,0,...,0) = idr,+1,

1    ...   o"

p(0,...,!,...,0) "i-1

0 1

<-l = 1,

where "[ ]" represents the transformation of Tr+1 covered by the linear transfor-

mation of Rr+1\ this representation determines a bundle structure for M2r+2 over

Tr+l with fiber Tr+1, since

M 2r+2 -.r+1
x©r+1z T

T+l

where 0r+1 Z operates on Tr+1 = Rr+1 by covering transformations, and on Tr+1

by p. Actually, in accordance with Auslander's results (mainly [2, Theorem 3, p.

136]), this fibered structure on M2r+2 is not surprising at all.

2. The examples. In order to construct an almost Kahler structure on M2r+2,

we first remark that there is a third way of describing the structure of the quotient

manifold M2r+2.

Let G be the closed connected subgroup of Gl(r + 3, C) defined by

f/1    0
0    1

0    a\
r+l r + 2

-.r+2

0 A

1    arr+1    a'r

0       1       arrX\    0

0

Uo

1

0

0

ar

1

0 „2nia

a¡,aG R >

that is G = H(l,r) x Sl; it is not hard to check that M2r+2 is diffeomorphic to

G/r, T being the discrete subgroup of matrices with integer entries. Next, denote

by Xi, y, Zi, t, 1 < i < r, the coordinate functions on G defined by

Xl(A) = <+,   y(A) = a;Xi,   zi(A)
-„r+2 t(A) = o,    for any A G G.

Then, a standard computation leads to the following family of linearly indepen-

dent left invariant 1-forms on G:

ai — dxi,    ß - dy,    -ft = dzi - Xidy,    r¡ = dt

and, since they are invariant under the action of T, there exist 2r + 2 1-forms

ai,/3,ïi,rj on M2r+2 such that

■K*(ài)=oti,    ir*(ß)=ß,    ic'fiil^li,    7T*(?7)=?7,

7r:G —» M2r+2 being the canonical projection.  Therefore, ai,ß,^i,fj are linearly

independent and globally defined on M2r+2.

Now, we set

F = ßAr) + ^2ätA^.
¿=i
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F is a 2-form of maximal rank and, since n*(dF) = d(n*F) = 0, it is closed;

hence F is a symplectic form on M2r+2. Actually, there exist many metrics and

almost complex structures on M2r+2 whose Kahler form is F. In the sequel, we

shall write down such an almost Hermitian structure on M2r+2.

First, we note that the dual fields of {cti,ß,~a,r]} on G are, respectively,

dxi ' dy     ¿—'  % dzi '       %     dzi ' dt

and they form an orthonormal frame field with respect to the left invariant metric

on G defined by

dS2=¿(a2 + 72)+/?2+772.

Let J be the tensor field of type (1,1) on G defined by

JXi = Zii,     JZji = —Xi,     J Y — 1,     J1  = — i.

Then J is a left invariant almost complex structure on G, and ds2 above is an

Hermitian metric with respect to J. Moreover, both J and ds2 are, in particular,

invariant under the action of T, so both project down to M2r+2; therefore, there

exists an almost complex structure J on M2r+2 such that it„JX = JntX for

any X G g, where g denotes the Lie algebra of G, and the corresponding induced

Hermitian metric is given by

d~s2 = J2(ai+i2)+ß"+e.
i=i

Since F is the Kahler form of this almost Hermitian structure and it is closed, it

follows that M2r+2 is an almost Kahler manifold. In fact, we shall prove that such

structure on M2r+2 is non-Kähler; to be more precise, we can state

THEOREM 2.1. The almost Hermitian structure (J,ds2) on M2r+2 is strictly

almost Kahler. In fact, no Köhler structures exist on M2r+2 for odd r.

PROOF. From Corollary 1.4 we know that 61(M2r+2) = r + 2; hence, no Kahler

structures could exist on M2r+2 when r is odd, because of the well-known fact

that the first Betti number of a compact Kahler manifold must be even. But when

r is even we obtain no topological obstructions in this way, so we are obliged to

proceed through a different way; in fact, we shall compute the curvature tensor

field of M2r+2, for any r, and the computations will be done in the Lie algebra g

of G because M2r+2 and G are locally isometric.

So, let ( , ) denote the metric ds2 on G; then, its Riemannian connection V is

given by

2(VuV,W) = U(V,W) + V(U,W) - W(U,V)

- (U,[V,W\) - (V,[U,W\) + (W,[U,V})

for arbitrary U,V,W G g; therefore, for the covariant derivatives of the frame fields

Xi, Y, Z{, T G g one obtains

vXxZi = vZix, = -ir,   vXiy = -vyxt = \zu   vZir = vYzz = \Xi,
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the other covariant derivatives are all zero. And, for the curvature tensor R given

by R(U,V,W,Q) = (R(U,V)W,Q), we get

R(Xi,Xj, Zi, Zj) — j,        i T 3i

R(Xi, Zj, Xj ,Zi) — — -j,

R(Xi,Y,Xi,Y) = j,

R(Zi, Y, Zi, Y) — —-j,

the other components being zero. Therefore,

R(Xi,Xr,Zi, Zr) — -j,

R(Xi, Xr, J Zi, JZr) = R(Xi, Xr, Xi, Xr) = 0,

and thus R(Xi, Xr, Z\, ZT) ^ R(Xi, Xr, JZi, JZr); hence, the structure on M2r+2

is not Kählerian.

Another proof of the fact that the structure we are considering on M2r+2 is

not Kahler can be obtained by computing the Ricci and the *-Ricci tensors of

(M2r+2, J, ds2); once more, we do the computation in g.

The Ricci tensor p is given by

r

p(U,V) = ^{RfrXiMXJ + RMZiMZi)}
i=l

+ R(U,Y,V,Y) + R(U,T,V,T)

for any U, V G g; then, one finds easily that the non vanishing components of p with

respect to the basis {Xi, Y, Zi, T} oî g are

p(Xl,Xl) = \,    p(Zl,Zi) = -\,    p(Y,Y) = \r.

Similarly, the *-Ricci tensor p* is given by

r

P*{U, V) = J2iR(u> Xi'W Jxi) + W z" JVi jzi)}

+ R(U, Y, JV, JY) + R(U, T, JV, JT)

and a simple computation shows that p* = 0.

Therefore, p ^ p*, while in a Kählerian manifold both tensors must be equal.

Finally, the nonintegrability of the almost complex structure J on G (and hence

of J on M2r+2) can be easily checked by computing the components of its Nijenhuis

tensor Nj; one finds easily that the nonvanishing components of Nj are

Nj(Xi,Y) = -Nj(Zi,T) =-Zi,

Nj(Xl,T) = Nj(Zi,Y) = -Xl,

and so (M2r+2, J, ds2) is a strictly almost Kahler manifold (in the terminology of

Watson's paper).

REMARK. Obviously, the almost Kahler structure defined on M2r+2 is not the

unique possible of this type on the manifold. For example, for r = 1, the structure

which we have defined on M4 is not the same as that of Abbena's paper [1], but

both, Abbena's and ours, can be easily shown to be equivalent; in fact, one can
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easily define an automorphism of G preserving the almost complex structures and

which projects down to M2r+2.

ADDED IN PROOF. After this paper was completed, L. A. Cordero, M. Fernán-

dez and Alfred Gray (Symplectic manifolds with no Kahler structure, preprint)

proved that M2r+2 can have no Kahler structures for any r > 1.
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