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SLLN AND CONVERGENCE RATES

FOR NEARLY ORTHOGONAL SEQUENCES

OF RANDOM VARIABLES1

FERENC MÓRICZ

Abstract. Let {Xk : k > 1} be a sequence of random variables with finite second

moments EX} = ak < ao for which \EXkX¡\ < oko,p(\k - /|), where {o(j):j > 0}

is a sequence of nonnegative numbers with T.JLoP(j) < oo. In particular, in the case

of orthogonality, p(j) = 0 for y > 1. We prove strong laws for the first arithmetic

means f„ = n"1EJ_1 Xk and the Cesàro means

T„ = "-'£(!-(¿-IK1)*,.
k-\

The convergence rates are studied in the form /,{sup„>2i> |f„| > e} and

/>{sup„>2p |t„| > e}, where e > 0 is fixed and p tends to oo. At the end, the case

where E°°_0p( y) = oo is also treated.

1. Introduction. Let {Xk: k > 1} be an orthogonal sequence of random variables

(rv's), i.e.

(1.1) EXkX, = 0       (k* H:'k,l>l)

with finite second moments

(1.2) EXl = o¡       (k>\).

We will consider the first arithmetic means fn = (l/n)T."k = xXk as well as the

Cesàro means (of order 1)

rn = lt(l-^)Xk        (n>l).
k = 1

A consequence of the Rademacher-Menshov theorem, well known in the theory of

orthogonal series, is the following (see e.g. [3, pp. 86, 87]).

Theorem A. // {Xk} is an orthogonal sequence of rv's with (1.2) and

- 2

(1.3) E ^[log(rc + l)]2<oo,°k   h      //     ,    1 M 2

k-\ »

then

(1.4) limf„ = 0    a.s.

c-'l k'
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In this paper the logarithms are to the base 2.

It is also pointed out that the sufficient condition (1.3) is the best possible (see

Tandori [4]).

The next theorem is due to the author [2].

Theorem B. If {Xk} is an orthogonal sequence of rv's with (1.2) and

oo 2

(1.5) ^Í<00'
k-1 *

then

(1.6) lim t„ = 0    a.s.
n —* cc

2. Main results. The orthogonality condition (1.1) can be weakened in Theorems A

and B maintaining conclusions (1.4) and (1.6), respectively.

To be more precise, we say that the sequence {Xk} of rv's satisfying condition

(1.2) is quasi-orthogonal (or nearly orthogonal) if there exists a sequence {p(j):

j > 0} of nonnegative numbers such that

(2.1) \EXkX,\^akalP(\k-l\)        (k,l>\)

and
oc

(2.2) Ep(i)<«>.

If EXk = 0 (A: > 1), then (2.1) is equivalent to

\Cxm(Xk,X,)\^p(\k-l\)       (k,l>\).

Also, we may assume that p(0) = 1 and 0 < p(j) < 1 ( / ^ 1).

Now, the generalizations of Theorems A and B are the following:

Theorem 1. If {Xk} is a quasi-orthogonal sequence of rv's, then (1.3) implies (1 A).

Theorem 2. If {Xk} is a quasi-orthogonal sequence of rv's, then (1.5) implies (1.6).

Both theorems will be obtained as corollaries of the next two theorems stating

convergence rates.

Theorem 3. If {Xk} is a quasi-orthogonal sequence of rv's, then (1.3) implies, for

every e > 0,

(2.3)

I   1      2" °°       a2 \
p{supifj>e\ = o ¿z^ i 7i[iog(*+i)]2   (p>°y

V n>2f ' \ I  r k = l A-2P + 1 K I

Theorem 4. If {Xk} is a quasi-orthogonal sequence of rv's, then (1.5) implies, for

every e > 0,

. /    *       %' oo 2 i

(2.4) Wsupk|>£   =oM-E^2+     E     TÍ ÍP>*).
(n>2' ' { 2 F k=l k~2"+l k   I

We note two other consequences of Theorems 3 and 4.
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Corollary 1. Assume {Xk} is a quasi-orthogonal sequence of rv's and

(2.5)
00   a2
E -^[log(k + l)]2X(k)<oo,
*-i

where {\(k): k > 1} is a nondecreasing sequence of positive numbers such that the

sequence {k2/\(k): k > 1} is also nondecreasing and tends to oo. Then, for every

e > 0,

(2.6) lim \(2p)P{ sup |?„|>e} = 0.
p->cc ^n>2"

Corollary 2. Assume {Xk} is a quasi-orthogonal sequence of rv's and

Et|M*)<°o,
*-i k1

where {\(k)} is the same as in Corollary 1. Then, for every e > 0,

lim \(2P)P{ sup |t„|> e) = 0.

We briefly indicate, e.g., how Corollary 1 can be deduced from Theorem 3.

It follows from (2.5) that (even dropping the factor [\og(k + l)]2), via the

Kronecker lemma (see e.g. [3, p. 35]),

■ •      a(2")   £    ,     ni™ 4^ E o2 = 0.
/? —oo      2  y k-1

On the other hand, again by (2.5),

limX(2')    E     ^[\og(k + l)}
p—*oo

k = 2P +xk<

<   lim      E     ^[\og(k + l)]2\(k) = 0.
p^x k-2'+i k

That is, (2.3) implies (2.6)

3. Auxiliary results.

Lemma 1. If {Xk} is a sequence of rv's satisfying conditions (1.2) and (2.1), then

(3.1) E  xk
k = a + l

B-l

< i + 2Ep(y)   E (a > 0, « > 1).

y-i A = «+l
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Proof. Squaring out, using (1.2) and (2.1), letting^ = I - k and, finally, applying

the Cauchy inequality yields (3.1):

a + n

E  xk
k-a + 1

2 a+n a+n—1    a+n

=    E   EX2+2   E       E   EXkX,
k=a+\ k=a+ll=k+l

a + n a + n—\     a + n

<     E    f* + 2    E       E   oka/P(l-k)
k=a+l k=a+ll=k+l

a + n n - 1 a + n -j

=   E "* + 2lp(i)  E °tPk+j
k = a+l ;=1 A = a+1

I« — 1 \     a + n
i + 2Ep(y)   E ^2,

y = l / k = u+\

since

a + n — j I a+n—j        a + n—j

E °fPk+j < j   E ^a2 E °l+j
k=a+\ {k=a+1       k-a+1

1/2

1/2
a+n~j a+n

E -a2   E   o2\    <   E -a2-
A=a+1        k=a+j+\        j k=a+\

In the proof of Theorem 4 we need a slightly more general form of Lemma 1.

Lemma 2. If {Xk} is a sequence of rv's satisfying conditions (1.2) and (2.1), and

{bk: k > 1} is a sequence of numbers, then

\     a + n

(3.2)    E E      ¿>A*A
A = a + 1

2 / n-1

<   1 + 2EpO')|    E    b2a2       (a>0,»>l).
\ 7 = 1 / A = a+1

Indeed, applying Lemma 1 for { Y¿ = ¿¿. Ä^}, we get immediately Lemma 2.

The next lemma is a special case of the maximal inequality in [1, Theorem 3].

Lemma 3. If {Xk} is a sequence of rv's such that condition (3.1) is satisfied, then

(3.3)   E max
1 < m < n

E  xk
k-a+1

2 /
2

[log 2«]
n—\ \     a + n

1 + 2Ep(v)      E    o2
j=\ j k-a+l

4. Proofs of Theorems 3 and 4.

Proof of Theorem 3. Obviously,

(4.1) pi sup |f„| > e) <  E P{     max     |f„| > e

A simple estimate shows

(a ^ 0,n > 1).

1

2"

max     |f J < |f2,| + —     max
<n<2»+1 ¿    2«<ns¡2«+1

E   xh
A = 2« + l



nearly orthogonal random variables 291

On one hand, by (3.1) and (2.2),

(4.2) EC 2i —
22„

Ea
A = l

On the other hand, by (3.3) and (2.2),

max
2*<«<2« + 1

E   xk
A = 2«+l

29+1

= 0{l}[log2'+1]2    E    o2
k = 2"+l

2?+i

= 0(1}    E    o,2[log(* + l)]
k = 2"+l

2

Thus, by the Chebyshev inequality,

(4.3)    P{      max     |fj > e U P{ |f2,| > x   + P{     max
2,<H^2''+1 ' "■ ' I   T7^ „<-->«+'2<,<«<s2«4

E   a;
A = 2»+l

> e2?-i

0(1} /    ,        2" 2? + i

¿E^ + ¿   E  ^[iog(fe + i)]2
*'*-! z      k = 2"+l )

Keeping (4.1) in mind, simple calculations show

oc       -,        2" 2" x

(4.4) E zj: E <^a2 = E «a2 E .
<?=/> Z      A = l A = l       ? = /> Z *»2'+l       ö:2«>Az

1 1

r+   E   ^ E2a *-^ K       J—1

A = 2'> + 1       q:2">k

I    -i       2P

and

-f- I »a +   E   -
j 2  ^ A = l A = 2'' + l  K"

oo       -, 2*+1 oo 2

(4-5) E¿     E    a,2[log(/c+l)]2<4    E     TÍ[log(^ + l)]2-
í/ = /7 z      A-2"+l

Collecting (4.1) and (4.3)-(4.5) yields (2.3).

Proof of Theorem 4. Similarly to (4.1),

k-2' +ik'

(4-6)
n > 2'

W sup |t„| > e) <  E P\     max     |t„| >
2«<n<2«

This time we avoid using the maximal inequality (3.3). Instead, we estimate as

follows:

max     |tJ < |f2,| + |t2, — f2„| +      max     |t„ — t2»|,
2i<n^2i*1    ' 2"<n*i2«+l

whence

(4-7) max     |t„| > eU p{\^\ > {} + ¿>{|t2, - fa,| > f
2«<n<2«+1 > *■ 3 ; 1. J

+ P{     max     |t„ - t,„| >
2<'<h«2<' +
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According to this, we complete the proof in three steps:

(i) By (4.2) and (4.4),

0{1}/  1(4.8)     iPfel >§}<£££&
q=p "    q = P

(ii) Taking into account the representation

1

, TTP  E °l +     E     71
\ z       A = l k = 2" + lK

2"

rv - f2, = - — E (k - 1)^,
22<?

A = 2

via (3.2), (2.2) and (4.2),

E[T2ii — S 21 J    =

By this and (4.8),

0{1} 2"

24<?   t_
lï2  2     °{1>L (k - 1) ok =

A = 2

Ea2=0{l}^22,.
z A = 2

(4.9)       E Wlv - s2<\ > I) < -t E /fe - U
3/ "" e2

0(1} /    -,        2'

U2% = ! A = 2 '■ + ik:

(iii) By the Cauchy inequality,

>A2 +

2</ + i /     29+1

(4.10)        max     |t„-t2,|<     E    k - T„-iN       E    "k ~ T„-i]
2*<«*(2"+1 B-2»+l U-2*+l

The representation

1/2

T„- T„-l =   E
A = l

(&-l)(2«-l) 1

«2(«-l)2 n(n-l)

can be easily checked, whence, via (3.2) and (2.2),

*K-T.-ila-
Q{1) ¿2

«2(« - l)2 *T,

Thus, by (4.2),
2<?+1 2<,+

E  «£[t„-t„^]2 = o{i}   E
» = 2« + l

E-Á
„ = 2»+l «(« - 1)    A = l

Oil) 2"+I
^-E-a2 = o{i}^2V,

A = l

By this, (4.10) and (4.4),
00 . , (-,( -I  1        00

(4.11)     EW     max     |t„-t2,|>^    =idU.££&+1
2«<«<2"+1 J/

</-/> ?-/>

2(> + i

„2       |   ~>2p + 2    '—' '—' ^2 ,22p- A = l A = 2',+ i + l

Putting together (4.6)-(4.9) and (4.11) gives (2.4).
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5. The case when {Xk} is not nearly orthogonal. In this concluding section we

assume that conditions (1.2) and (2.1) are satisfied, but (2.2) is not, i.e.

(5.1) Ep(y') = oo.
./=o

We will require, for the sake of simplicity in calculations, that the sequence

il""1 \
(5.2) < — E p(j)' « > «0 > is nonincreasing from some nQ on.

I n 7=0 j

It is easy to see that this requirement is equivalent to

1 v.1
p(«)<- E P(j)      (« > »o)-

7=0

The following three theorems can be proved by using methods similar to those in

§4, and using Lemmas 4 and 5 below.

Theorem 5. If {Xk} is a sequence of rv's satisfying (1.2), (2.1) and (5.2), then the

condition

oo     „2 I k-1 \
7A

(5-3) E 77    LpU)  [log(*+ l)]2 < oo        (p(0) = l)
k = ikz\J = 0 j

implies (1.4).

If the divergence in (5.1) is "fast enough" in the sense that there exist a number

r > 1 and a positive integer pQ such that

(5.4) *£o   ip{j)>r       (p>Po.p(o) = l),

zY-VpU)
then the factor [log(k + l)]2 in (5.3) becomes superfluous.

Theorem 6. If {Xk} is a sequence of rv's satisfying (1.2), (2.1), (5.2) and (5.4), then

the condition

oo    „2 I k-1 \

(5-5) EjE^h
a = i k   \/=0 /

implies (1.4).

Theorem 7. // {Xk} is a sequence of rv's satisfying (1.2), (2.1) and (5.2), then

condition (5.5) implies (1.6).

Here we present only two lemmas, without entering into details. The first of them

is a special case of the maximal inequality [1, Theorem 4].

Lemma 4. If {Xk} is a sequence of rv's such that conditions (3.1) and (5.4) are

satisfied, then

max
1 < m < »

a + m

vE *,
k = a + l

2 ln-1 \     a+n

= 0{ ZpU)\   I   °a2      (a>0,»>l).
I 7 = 0 / A = a+1
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This lemma is crucial in the proof of Theorem 6.

The second lemma is concerned with numerical series and can be easily checked.

Lemma 5. If condition (5.2) is satisfied, then

oJtTjEpO)} (a=land2)

°{t4M <*»*>■
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1      1P~l

p: 2"^k L 7 = 0

and

oo      -.    ll—l

EJjEp(7) =
n=k n     /=0


