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SOME ELEMENTS IN THE STABLE HOMOTOPY

OF SPHERES

WEN-HSIUNG LIN1

Abstract. An infinite family in 2w* at Adams filtration 4 is constructed.

Let A denote the mod2 Steenrod algebra. There is a spectral sequence (Esr-'}

which converges to the 2-primary component of the stable homotopy groups of

spheres 2tt% and has

E¡-' = Ext^''(Z2,Z2).

This is known as the mod 2 Adams spectral sequence [1].

Let h¡ e Ext1/j2'(Z2,Z2) be the class corresponding to the generator Sq2' e A as

described by Adams in [2]. J. P. May shows in [12] that Ext^22(Z2,Z2) = Z2

generated by an element called c,. D. M. Davis shows in [9] that cxh¡ # 0 in

Extj2+u(Z2, Z2) for /' > 11. In this paper we prove

Theorem 1. For i ^ 11, cxh¡ survives the Adams spectral sequence and so detects

homotopy elements in w2. + 18.

This establishes an infinite family in 2<n% at Adams filtration 4. This family cannot

be constructed from elements of lower Adams filtrations so far exposed [7, 11].

Using May spectral sequence [12] one can show that cxh¡ =£ 0 for 5 < / < 10 also,

and our result is true for these cases too. The case / = 5 was published by M. C.

Tangora in [14] and other cases have not yet formally published.

The proof is based on Mahowald's technique in [11], where he proves hxhi detects

homotopy elements for ; > 3. For a, b e Z with b < a there is a spectrum P¡¡ which,

when b > 0, is the suspension spectrum of stunted real projective space RP"/RPh_1.

These can be defined as Thom spectra or using James periodicity as in [3]. Let S"

denote the sphere spectrum in stable dimension n. In the following, the cohomology

groups have mod 2 coefficients.

Proposition 2. Suppose i >T. Then

(a) There is a map f: P'2¡-¡_x -* 5"2_1 such that, in the mapping cone X = S~'

Uj- CP_ 22-1 _,, the Steenrod operation

Sq2': H-2,~l(X) = Z2 ^ H-\X) = Z2

is nonzero.
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(b) There is a map g: S11 -* -P_22-'-i sucn mat me composite

s17^p:2->_x^s-2

is detected by c, where p is the collapsing map.

This implies that cxh¡ are permanent cycles in the Adams spectral sequence (in

deducing this, one needs the fact that in X primary operations from the bottom cell

to other cells of dimensions < -2'_ l — 1 are trivial and this follows by dimensional

reasons). Since Ext^'(Z2,Z2) = 0 for s < 2 and t - s = 2' + 19 [2], cxh¡ are not

boundaries. This proves Theorem 1.

The result 2(a) is not new; it is primarily due to Mahowald [11]. A detailed proof

of it can be found in [8]. For completeness we sketch the proof as follows.

Consider the double loop space Çl2S3 where S3 now stands for the 3-sphere. V. P.

Snaith shows in [13] that there is a stable splitting

Q2Si=  V Dk.
A»0

Here Q2S+ denotes S2253 with a disjoint base point, D0 = S° (two points) and for

k > 1

Dk = F(R2, AQ+aJs1 A  ••- AS1),

where F(R2, k) is the configuration space of /c-tuples of distinct points in R2. In [11]

Mahowald showed that for k > 1

(1)    H*(Dk) = A/A{x(Sq'): i > [k/2]} generated by a class uk e Hk(Dk),

and conjectured that, at prime 2, Dk had the stable homotopy type of the Brown-

Gitler spectrum B([k/2]) [5]. Here x: A -» A is the canonical antiautomorphism of

A. Mahowald's conjecture was later proved by Brown and Peterson in [6]. Brown-

Gitler spectra B([k/2]) are characterized by (1) together with an additional property

which will not be described here (see [6]). A corollary of this property is the

following:

Let M be a closed manifold of dimension n < k and let

, , T(vM) be the Thom spectrum of the stable normal bundle vM

of M with Thom class U e H*(T(vM)) lying in dimension

zero. Then 3 a map <i>: ~2.kT(vM) -* Dk such that <p*(uk) = U.

Applying (2) to M = RP      and letting v = vKPv^ we have the following:

(3) 3 a map (b: I,2'^T(p) -+ D2,i such that cí>*(m2.-.) = U.

We have S2'^) = 22'+1P__|-i_i [4, 10]. Since the Stiefel-Whitney class oi2¡-i_x(v)

is nonzero, it follows that Sq2 ~1(U) # 0, which is the top class of

¿/*(22' + 1P;22-i_1). Let v = Sq2'"1-^«^-!) e H2'-\D2, ,) = Z2. From (3) we see

that

, , 3 a map <p: 22' + 1P72-._, -♦ Dr¡ such that <¡>*(v) # 0 in

W //2'-1(22' + 1i'_-22-1_2) = Z2.
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Mahowald also shows in [11], and this is crucial, that

(5)        3 a stable map r\: Q2S\ = Vk>0Dk -» 5° such that

Sq2': H°(S° U^.CÄ,,-») = Z2 -+ H2'{s° U^.C/V.) = Z2

is nonzero for each i > 1.

Proposition 2(a) follows by (4) and (5).

We remark that in [11] Mahowald only considers S2259 to get a result analogous to

(5). But his argument also works for Í2253.

Our main work is to show Proposition 2(b). Let tj, p and a be the Hopf classes in

ir/, i73v and iTj, respectively [15]. H. Toda has shown [15] that (v, tj, ct2) consists of a

single element rJ which has order 2. May observed [12] that rJ is detected by cx. From

the definition of the Toda bracket (v, r/, a2) we see that, for any extension v:

S1 U^e3 -» S"2 of v: S1 -» S~2 and any coextension a2: S11 -> S1 U^e3 of a2:

S17 - S3,

72 t
/¿\ the  composite  S11 -» S1 U^ e3 -* S 2  is  always a  and  is

detected by c,.
(1.20

Consider 2_1P4 = 5° U2l e1 U e2 U2l e3 which is the mapping cone of S2   -»   (5°

U2le') V S2, where tj is a coextension of tj: S2 -* S1. There is an obvious map

a

obtained by pinching S°Ue2 = S° v52toa point. Toda also shows in [15] that

(2t, tj, a2) = {0} and 2a2 = 0. These imply that there is a map a2: S17 -* S^P/

such that

(7) the composite S17 °-+ S^P4 -^ S1 U, e3 is a a2.

We will show that there is a map g: 2   P4 -» P_2>~l-i sucn mat

g />
the composite 2_1P4 -» P~22-\_x -» S'2 is equal to the com-

^ ' posite S^P4 -î> S1 U„ e3 -^ S~2 for some v.

(6), (7) and (8) imply Proposition 2(b) by taking g = g °a2.

To show (8) consider the cofibration sequence

s-'PTâW, - s-*J»-V'-i -» s-^o4 - P-l-'-i

induced by the inclusion 2_1P_~2'-»-i ~* S^P^-i-i- Here g is not uniquely de-

termined; it can be altered, say, by any self-homotopy equivalence 2_1P04 -» S'IPq4.

I. M. James shows in [10] that P:¡,-¡_x » P^-'-i V S"1 and S"1?,,4 = S'1 V S"1?4.

Consider the composite

g : l-W^p.-*-.., = p-,2-^ v «r1 - p;,2-^,
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where the second map is the projection. We will show that there is a choice of g such

that

g p
the composite S_1P4 -» P_""22-i_j -» S"   is zero on the bottom

cell of 2^P4.

Granting (9) we see that, since 774 = 0, p ° g is trivial on the subcomplex S°Ui2 =

5° V S2 and therefore factorizes through S1 U^e3, and it is easy to see that the

factorization map Sl U^e3 -» S""2 is a i>. Thus g satisfies (8).

Suppose X = p °(g\S°): S° -* S~2 is nonzero; so X = tj2. It is easy to see that the

composite

s~lg^ p_"|-i_i =» p_~22->-i v s-1 -> p:22-^i -^ s~2

is tj. We have 2v e (tj,2¿, tj) [15]. Hence there is a map tj': 2~lPx -* S~l which,

when restricted to 5°, is tj. Consider the map

1   V

0    1
*2-1P04 = S-1 v S^Pj4.2~lP04 = S~l v S^P4

It is clear that a is a self-homotopy equivalence. Let g' = g ° a: 2_1P04 -> P~\,-\_x.

Then the corresponding g' satisfies (9). This completes the proof.
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