A p-LOCAL SPLITTING OF BU(n)

KENSHI ISHIGURO

ABSTRACT. Let p be a prime and let n > 1. A necessary and sufficient condition that the classifying space BU(n) is p-equivalent to the product of nontrivial spaces is that p does not divide n.

Let U(n) denote the Lie group of unitary $n \times n$ matrices, and let $U = \varinjlim U(n)$. In this paper we study the classifying space BU(n) and determine those primes at which this space is equivalent to a product. The result is quite different from the infinite case. Recall that when we pass to the limit there are two types of splitting that occur. The first requires no localization;

$$BU \simeq BT^1 \times BSU$$
.

The proof of this splitting is elementary, of course, but it does use the H-structure on BU. The second type of splitting is truly p-primary. At each prime p, BU splits into a product of p irreducible spaces

$$BU \simeq_p \prod_{n=1}^p B(2n,p).$$

This was first proved by Peterson [6]. A thorough account of this splitting is also given in Zabrodsky's book [8].

The main result of this paper is

THEOREM. If $1 < n < \infty$, then BU(n) is irreducible at p if and only if p divides n. If p does not divide n, then

$$BU(n) \simeq_p BT^1 \times BSU(n)$$

and both factors are irreducible.

Most of the work in our proof involves showing that when p divides n, the unstable algebra $H^*(BU(n); \mathbf{F}_p)$ is indecomposable over the Steenrod algebra. In other words, it cannot be expressed as the tensor product of two nontrivial unstable A^* -algebras. Here A^* denotes the Steenrod algebra modulo the two-sided ideal generated by the Bockstein coboundary. Our proof uses reflection groups and the methods and results of Adams and Wilkerson [2].

I would like to thank my advisor, C. W. Wilkerson, for his help and encouragement.

1. A^* -algebras. Let H^* and E^* be A^* -algebras. We say that E^* is a retract of H^* if there are A^* -maps

$$E^* \stackrel{i}{\rightleftharpoons} H^*$$

such that $\pi \cdot i = 1_{E^*}$.

Received by the editors December 28, 1984.

1980 Mathematics Subject Classification. Primary 55P45.

Key words and phrases. Classifying spaces, Steenrod operations, modular representations.

PROPOSITION 1. Suppose that $H^* \cong H^*(BT^n : \mathbf{F}_p)^W$ where W is a suitable group of A^* -automorphisms. Then any A^* -retract of H^* is likewise the ring of invariants in $H^*(BT^k : \mathbf{F}_p)$ for some integer k and some group W'.

PROOF. The argument uses the main result of Adams and Wilkerson [2] and the naturality of A^* -maps. Suppose that E^* is a retract of H^* . Obviously, E^* is embedded in $H^*(BT^n: \mathbf{F}_p)$. Since $E^* = \pi H^*$, it is Noetherian. So it remains to show that E^* satisfies the two conditions in [2, Theorem 1.2]:

- (i) E^* is integrally closed in its field of fractions.
- (ii) If $y \in E^{2dp}$ and $Q^r y = 0$ for any $r \ge 1$, then $y = x^p$ for some $x \in E^{2d}$.

First, suppose $\alpha \in q(E^*)$. Here q(R) denotes the quotient field of an integral domain R. Let \tilde{i} be the monomorphism of the fields $q(E^*) \to q(H^*)$ such that $\tilde{i}|_{E^*} = i$. If α is integral over E^* , then the image $\tilde{i}(\alpha)$ is integral over H^* . Since H^* is integrally closed, $\tilde{i}(\alpha)$ lies in H^* . Let us write $\alpha = \alpha_1/\alpha_2$ where $\alpha_i \in E^*$. Thus, we get $i(\alpha_1) = i(\alpha_2) \cdot \beta_0$ for some $\beta_0 \in H^*$. Applying the map π , it follows that

$$\pi \cdot i(\alpha_1) = \pi \cdot i(\alpha_2) \cdot \pi(\beta_0), \qquad \alpha_1 = \alpha_2 \cdot \pi(\beta_0).$$

Since $\pi(\beta_0) \in E^*$, we conclude that α lies in E^* . So E^* is integrally closed. Next, suppose $y \in E^{2dp}$ and $Q^ry = 0$ for any $r \ge 1$. Since i is an A^* -map, then $Q^ri(y) = 0$. Thus there is $x \in H^{2d}$ such that $i(y) = x^p$.

Once again we apply the map π , getting $\pi i(y) = \pi(x^p)$, $y = \pi(x)^p$ where $\pi(x) \in E^{2d}$. This completes the proof.

2. Generalized reflection groups. Let V be a finite-dimensional vector space over a field k. A pseudo-reflection of V is a linear automorphism w such that rank(1-w)=1. We say that a vector u is a direction of a pseudo-reflection if it is an eigenvector for the eigenvalue that is not equal to 1.

Let $\rho: G \to \operatorname{GL}(V)$ be a linear representation. A nonzero vector $t \in V$ is called G-invariant if $\rho(g)t = t$ for any $g \in G$. The representation ρ is called reducible with respect to a G-invariant vector t if there is a hyperplane V_0 in V such that $V = V_0 \oplus \langle t \rangle$ and, for any $g \in G$, the automorphism $\rho(g)$ has the form $\gamma \oplus 1$ for some $\gamma \in \operatorname{GL}(V_0)$.

PROPOSITION 2. Let W be the group generated by pseudo-reflections w_1, \ldots, w_r . Assume that each u_i is a direction of w_i and that t is W-invariant. Then W is reducible with respect to t if and only if the vector t does not belong to the subspace spanned by u_1, \ldots, u_r .

PROOF. Suppose that W is reducible and that V_0 is the hyperplane. Let w be one of the generators w_1, \ldots, w_r and let u be a direction of w. We can write $u = v_0 + bt$ for some $v_0 \in V_0$ and $b \in k$. If a is the eigenvalue which is not 1, it follows that

$$0 = w(u) - au = w(v_0 + bt) - a(v_0 + bt) = w(v_0) - av_0 + b(1 - a)t.$$

Since $w(v_0) \in V_0$, we get b(1-a) = 0. So b = 0 and $u = v_0 \in V_0$. This shows that $\mathrm{Span}(u_1, \ldots, u_r) \subset V_0$. Therefore, t does not belong to $\mathrm{Span}(u_1, \ldots, u_r)$.

Conversely, if $t \notin \text{Span}(u_1, \ldots, u_r)$, then there is a hyperplane V_0 such that $\text{Span}(u_1, \ldots, u_r) \subset V_0$ and $V = V_0 \oplus \langle t \rangle$. Given a generator w with direction u, we

have a decomposition; $V = \langle u \rangle \oplus \operatorname{Ker}(w-1)$. Let us write $V_w = V_0 \cap \operatorname{Ker}(w-1)$. We claim $V_0 = \langle u \rangle \oplus V_w$. In fact, we see that $\operatorname{Ker}(w-1) = V_w \oplus U$ for some subspace U. Since $V_0 \cap U = 0$, we get $V_0 \oplus U \subset V$ so that $\dim U \leq 1$ and hence $\dim V_w \geq n-2$. We notice that $V_w \neq \operatorname{Ker}(w-1)$ since $t \notin V_0$. Therefore, $\dim V_w = n-2$. We now see that $w \cdot V_0 \subset V_0$ since $w(\langle u \rangle) \subset \langle u \rangle$ and w fixes V_w pointwise. Thus V_0 is invariant under the W-action and hence W is reducible with respect to t. This completes the proof.

3. Proof of the Theorem. First assume that p divides n. By Borel [3, Proposition 29.2], we see that $H^*(BU(n): \mathbf{F}_p) = H^*(BT^n: \mathbf{F}_p)^{S_n}$ where S_n is the symmetric group. Suppose that $H^*(BU(n): \mathbf{F}_p)$ is A^* -decomposable. According to Proposition 1, there is an A^* -isomorphism θ from $H^*(BU(n): \mathbf{F}_p)$ to $H^*(BT^{n_1}: \mathbf{F}_p)^{W_1} \otimes H^*(BT^{n_2}: \mathbf{F}_p)^{W_2}$ for some integers n_1 and n_2 and some suitable groups W_1 and W_2 because each A^* -algebra is a retract. By Adams and Wilkerson [2, Proposition 1.10], we can find an A^* -map ϕ which makes the following diagram commutative:

$$H^*(BT^n: \mathbf{F}_p) \xrightarrow{\phi} H^*(BT^{n_1+n_2}: \mathbf{F}_p)$$

$$\uparrow \qquad \qquad \uparrow$$

$$H^*(BU(n): \mathbf{F}_p) \xrightarrow{\theta} H^*(BT^{n_1}: \mathbf{F}_p)^{w_1} \otimes H^*(BT^{n_2}: \mathbf{F}_p)^{w_2}.$$

In this diagram the vertical maps are injective. If $W = W_1 \times W_2$, then clearly

$$H^*(BT^{n_1}: \mathbf{F}_p)^{W_1} \otimes H^*(BT^{n_2}: \mathbf{F}_p)^{W_2} = H^*(BT^{n_1+n_2}: \mathbf{F}_p)^W.$$

Recall that $H^*(BU(n): \mathbf{F}_p)$ is a polynomial ring in n variables. Thus the maximum number of elements in $H^*(BT^{n_1+n_2}: \mathbf{F}_p)^W$ which can be algebraically independent over \mathbf{F}_p is n; so we have $n_1+n_2=n$.

Recall that $H^*(BU(n): \mathbf{F}_p) \hookrightarrow H^*(BT^n: \mathbf{F}_p)$ is a Galois extension with Galois group S_n . Lang [5, p. 247] shows that for any $w \in W$ there exists $\sigma \in S_n$ such that $w\phi = \phi\sigma$. We claim that ϕ is invertible. In fact, if an A^* -map ψ covers θ^{-1} , then $\psi \cdot \phi$ covers $\theta^{-1} \cdot \theta =$ identity; so the map $\psi \cdot \phi$ differs from the identity map by a permutation. Thus ϕ is injective and hence bijective for dimensional reason. Consequently $\sigma = \phi^{-1}w\phi$. Thus it follows that, if $H^*(BU(n): \mathbf{F}_p)$ is A^* -decomposable, then the group S_n is conjugate to $W_1 \times W_2$ in $GL(n: \mathbf{F}_p)$. It is well known that the symmetric group is not the product of two nontrivial subgroups. Consequently one of the W_i 's must be trivial and it follows that this representation of S_n is reducible with respect to an S_n -invariant vector.

Regard $H^2(BT^n: \mathbf{F}_p)$ as a vector space over \mathbf{F}_p with basis t_1, \ldots, t_n . The symmetric group acts on this vector space by the rule $\sigma(t_i) = t_{\sigma(i)}$. Recall that S_n is generated by the transpositions $\sigma_1, \ldots, \sigma_{n-1}$ where $\sigma_i = (i, i+1)$ and that the vector $t = \sum_{i=1}^n t_i$ is S_n -invariant.

Suppose p is odd. Each σ_i is a pseudo-reflection and the vector $u_i = t_i - t_{i+1}$ is a direction. Since the representation of S_n is reducible with respect to t, Proposition 2 shows that the S_n -invariant vector t does not belong to $\mathrm{Span}(u_1,\ldots,u_{n-1})$. Thus $\{u_1,\ldots,u_{n-1},t\}$ must be a basis. Equivalently the following $n\times n$ matrix must be

nonsingular:

Since the determinant of the matrix is n, the prime p does not divide n. This contradicts our assumption.

In the case p=2, it is enough to show that there is no such hyperplane V_0 when n is even. We recall that V has basis t_1, \ldots, t_n . Suppose that V_0 exists. Since S_n acts on V_0 , without loss of generality we may assume that $t_1 + \cdots + t_m$ is contained in V_0 for some m < n. If m=1, then we can find $\sigma \in S_n$ such that $t_i = \sigma t_1$. Thus each t_i belongs to V_0 . But dim $V_0 = n-1$, thus m>1. If m=2, then for each $k=2,\ldots,n$ we can find permutations τ_1,\ldots,τ_{k-1} such that

$$t_1 + t_k = \sum_{r=1}^{k-1} (t_r + t_{r+1}) = \sum_{r=1}^{k-1} \tau_r (t_1 + t_2).$$

Thus, each $t_1 + t_k \in V_0$ and hence $t = \sum_{k=2}^n (t_1 + t_k)$ is contained in V_0 since n is even. This contradicts the assumption $V = V_0 \oplus \langle t \rangle$. Therefore, 1 < m < n. Then we have, however, that

$$t_m + t_{m+1} = t_1 + \dots + t_m + \sigma_m(t_1 + \dots + t_m) \in V_0$$

and therefore $t_1 + t_2 \in V_0$. This is also a contradiction. We now conclude that V_0 does not exist.

Next assume that p does not divide n. Consider the map $f: T^1 \times SU(n) \to U(n)$ given by

$$f(z,A) = \begin{pmatrix} z \\ \ddots \\ \ddots \\ z \end{pmatrix} \cdot A$$

where $z \in T^1$ and $A \in SU(n)$. It is easy to see that this map is a homomorphism with fibre \mathbb{Z}/n . On the level of classifying spaces, this map induces another fibration

$$B\mathbf{Z}/n \to BT^1 \times BSU(n) \stackrel{Bf}{\to} BU(n).$$

Localization preserves fibrations; consequently, when this fibration is localized at p, the fibre $B\mathbf{Z}/n$ becomes contractible since p does not divide n. Hence the map Bf becomes a homotopy equivalence.

It remains to show that BSU(n) and BT^1 are irreducible at p. For BT^1 , this is obvious because $BT^1_{(p)} = K(\mathbf{Z}_{(p)}, 2)$. For BSU(n), the argument is very similar to the one used before. Namely, if BSU(n) split as a product at the prime p, then it would follow that the representation of its Weyl group S_n in $GL(n-1: \mathbf{F}_p)$ would be conjugate to a product. Just as before, it would follow that this representation would, in fact, be reducible with respect to a nonzero S_n -invariant vector t'. But such a vector would correspond to a generator of $H^2(BSU(n): \mathbf{F}_p) = 0$. This contradiction completes the proof of the Theorem.

REFERENCES

- 1. J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. 35 (1976), 1-41.
- J. F. Adams and C. W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Ann. of Math. 111 (1980), 95-143.
- 3. A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115–207.
- A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425-434.
- 5. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.
- F. P. Peterson, The mod p homotopy type of BSO and F/PL, Bol. Soc. Mat. Mexicana 14 (1969), 22-27.
- C. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 (1977), 227–237.
- 8. A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam, 1976.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202