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A p-LOCAL SPLITTING OF BU(n)

KENSHI ISHIGURO

ABSTRACT. Let p be a prime and let n > 1. A necessary and sufficient

condition that the classifying space BU(n) is p-equivalent to the product of

nontrivial spaces is that p does not divide n.

Let U(n) denote the Lie group of unitary n x n matrices, and let U = limU(n).

In this paper we study the classifying space BU(n) and determine those primes at

which this space is equivalent to a product. The result is quite different from the

infinite case. Recall that when we pass to the limit there are two types of splitting

that occur. The first requires no localization;

BU ~ BT1 x BSU.

The proof of this splitting is elementary, of course, but it does use the //"-structure

on BU. The second type of splitting is truly p-primary. At each prime p, BU splits

into a product of p irreducible spaces

v

BU ~p J] B(2n,p),
n=l

This was first proved by Peterson [6]. A thorough account of this splitting is also

given in Zabrodsky's book [8].

The main result of this paper is

THEOREM. If I < n < oo, then BU(n) is irreducible atp if and only ifp divides

n. Ifp does not divide n, then

BU(n) ~p BT1 x BSU(n)

and both factors are irreducible.

Most of the work in our proof involves showing that when p divides n, the

unstable algebra H*(BU(n);Fp) is indecomposable over the Steenrod algebra. In

other words, it cannot be expressed as the tensor product of two nontrivial unstable

^"-algebras. Here A* denotes the Steenrod algebra modulo the two-sided ideal

generated by the Bockstein coboundary. Our proof uses reflection groups and the

methods and results of Adams and Wilkerson [2].

I would like to thank my advisor, C. W. Wilkerson, for his help and encourage-

ment.

1. A*-algebras. Let H* and E* be vl*-algebras. We say that E* is a retract

of H* if there are A* -maps

U  il. 1 ^such that 7T • i — 1e- •
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PROPOSITION 1. Suppose that H* = H*(BTn : Fp)w where W is a suitable

group of A*-automorphisms. Then any A*-retract of H* is likewise the ring of

invariants in H*(BTk : Fp) for some integer k and some group W.

PROOF. The argument uses the main result of Adams and Wilkerson [2] and

the naturality of j4*-maps. Suppose that E* is a retract of H*. Obviously, E* is

embedded in H*(BTn : Fp). Since E* = ttH*, it is Noetherian. So it remains to

show that E* satisfies the two conditions in [2, Theorem 1.2]:

(i) E* is integrally closed in its field of fractions.

(ii) If y G E2dP and Cfy = 0 for any r > 1, then y = xp for some x G E2d.

First, suppose a G q(E*). Here q(R) denotes the quotient field of an integral

domain R. Let i be the monomorphism of the fields q(E*) —> q(H*) such that

í\e- = i- If oc is integral over E*, then the image i(a) is integral over H*. Since

H* is integrally closed, i(a) lies in H*. Let us write a — a\/a2 where a¿ G E*.

Thus, we get i(a\) — i(a2) ■ ßo for some ßo G H*. Applying the map n, it follows

that

-ïï ■ i'(ai) = -K ■ i(a2) ■ ir(ßo),        ai = a2 ■ ■n(ßo)-

Since 7r(/?o) G E*, we conclude that a lies in E*. So E* is integrally closed. Next,

suppose y G E2dp and Qry = 0 for any r > 1. Since i is an A*-map, then Qri(y) = 0.

Thus there is x G H2d such that i(y) = xp.

Once again we apply the map n, getting Tri(y) = n(xp),y — tt(x)p where tt(x) G

E2d. This completes the proof.

2. Generalized reflection groups. Let V be a finite-dimensional vector space

over a field k. A pseudo-reflection of V is a linear automorphism w such that

rank(l — w) = 1. We say that a vector u is a direction of a pseudo-reflection if it is

an eigenvector for the eigenvalue that is not equal to 1.

Let p: G —>GL(V) be a linear representation. A nonzero vector t G V is called

G-invariant if p(g)t = t for any g G G. The representation p is called reducible

with respect to a G-invariant vector t if there is a hyperplane Vb in V such that

V = Vo © (t) and, for any g G G, the automorphism p(g) has the form 7 © 1 for

some 7 eGL(Vb).

PROPOSITION 2. Let W be the group generated by pseudo-reflections u>i,..., wr.

Assume that each Ui is a direction of wt and that t is W-invariant. Then W Í3 re-

ducible with respect to t if and only if the vector t does not belong to the subspace

spanned by u\,...,ur.

PROOF. Suppose that W is reducible and that Vo is the hyperplane. Let w

be one of the generators w\,... ,wr and let u be a direction of w. We can write

u = vo + bt for some vo G Vo and b G k. If a is the eigenvalue which is not 1, it

follows that

0 = w(u) -au — w(vo + bt) - a(vo + bt) = w(vo) - avo + b(l - a)t.

Since w(vq) G Vq, we get 6(1 — a) — 0. So b = 0 and u = VqG Vq. This shows that

Span(ui,... ,ur) C Vo- Therefore, t does not belong to Span(iti,... ,ur).

Conversely, if t $ Span(ui,... ,ur), then there is a hyperplane Vb such that

Span(«i,..., ur) C Vb and V = Vq © (i). Given a generator w with direction u, we
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have a decomposition; V = (u) ©Ker(w-1). Let us write Vw = Vb l~lKer(u>-1). We

claim Vb = (u)®Vw. In fact, we see that Ker(u;—1) = VW®U for some subspace U.

Since Vb D U — 0, we get Vb © U C V so that dim U < 1 and hence dim Vw > n — 2.

We notice that Vw / Ker(w — 1) since t £■ Vo- Therefore, dimVm = n — 2. We

now see that w ■ Vo C Vb since w((u)) C (u) and iu fixes Vw pointwise. Thus Vb

is invariant under the W-action and hence W is reducible with respect to t. This

completes the proof.

3. Proof of the Theorem. First assume that p divides n. By Borel [3,

Proposition 29.2], we see that B*(BU(n) : Fp) = H*(BTn : Fp)s" where Sn

is the symmetric group. Suppose that H*(BU(n) : Fp) is ^-decomposable.

According to Proposition 1, there is an A*-isomorphism 9 from H*(BU(n) : Fp)

to H*(BTni : Fp)w* <g> H*(BTn2 : ¥p)w* for some integers m and n2 and some

suitable groups Wi and W2 because each A*-algebra is a retract. By Adams and

Wilkerson [2, Proposition 1.10], we can find an A*-map <j> which makes the following

diagram commutative:

H*(BTn : Fp) -t H*(BTni+n* : Fp)

î Î
H*(BU(n) : Fp) | H*(BTni : Fp)Wl ®H*(BTn* : FP)W\

In this diagram the vertical maps are injective. If W = Wi xW2, then clearly

H*(BTni : Fp)Wl ®H*(BTn* : FP)W2 = H*(BTni+n2 : Fp)w.

Recall that B*(BU(n) : Fp) is a polynomial ring in n variables. Thus the maximum

number of elements in H*(BTni+n2 : Fp)w which can be algebraically independent

over Fp is n; so we have ni + n2 — n.

Recall that B*(BU(n) : Fp) <++ H^BT71 : Fp) is a Galois extension with Galois

group Sn. Lang [5, p. 247] shows that for any w G W there exists a G Sn such

that w(j> = (fio. We claim that <j> is invertible. In fact, if an A*-map tp covers

0~x, then t/> • <j> covers Ö-1 • 6 = identity; so the map ip • (f> differs from the identity

map by a permutation. Thus <j> is injective and hence bijective for dimensional

reason. Consequently cr = (}>~1w(j). Thus it follows that, if H*(BU(n) : Fp) is A*-

decomposable, then the group Sn is conjugate to Wi x W2 in GL(n : Fp). It is well

known that the symmetric group is not the product of two nontrivial subgroups.

Consequently one of the W^s must be trivial and it follows that this representation

of Sn is reducible with respect to an ^„-invariant vector.

Regard H2(BTn : Fp) as a vector space over Fp with basis ti,...,tn. The

symmetric group acts on this vector space by the rule o(ti) — ta(i). Recall that Sn

is generated by the transpositions cri,... ,cr„_i where o i — (i, i + 1) and that the

vector t = J27=i h 1S Sn-invariant.

Suppose p is odd. Each Oi is a pseudo-reflection and the vector «¿ = í¿ — í¿+i is a

direction. Since the representation of Sn is reducible with respect to t, Proposition

2 shows that the 5„-invariant vector t does not belong to Span(ui,..., t¿n_i). Thus

{m,..., un-i, t} must be a basis. Equivalently the following nxn matrix must be
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nonsingular:

/   1 1\

0 '.   ".

-1    1/
Since the determinant of the matrix is n, the prime p does not divide n. This

contradicts our assumption.

In the case p = 2, it is enough to show that there is no such hyperplane Vb when

n is even. We recall that V has basis t\,... ,tn. Suppose that Vb exists. Since Sn

acts on Vo, without loss of generality we may assume that t\ +-\-tm is contained

in Vb for some m < n. If m = 1, then we can find o G Sn such that U — at\. Thus

each U belongs to Vb- But dimVb = ñ — 1, thus m > 1. If m — 2, then for each
k = 2,...,n we can find permutations T\,...,Tk-\ such that

k-\ fc-l

tl+tk = ^2(tr + tr + 1) = ^2 Tr(h + h)-
r=l r=l

Thus, each t\ + tk G Vo and hence t = 2fc=2(*i + **) *s contained in Vb since n is

even. This contradicts the assumption V — Vo © (t). Therefore, 2 < m < n. Then

we have, however, that

tm + tm+i = ii + ■ ■ ■ + tm + om(ti + ■ ■ • + tm) G Vo

and therefore ti +12 G Vo- This is also a contradiction. We now conclude that Vb

does not exist.

Next assume that p does not divide n. Consider the map /: T1 x SU(n) —> U(n)

given by

I z \

f(z,A) =

V
')

where zeT1 and A G SU(n). It is easy to see that this map is a homomorphism

with fibre Z/n. On the level of classifying spaces, this map induces another fibration

BZ/n -» BT1 x 5S/7(n) ^ 5i/(n).

Localization preserves fibrations; consequently, when this fibration is localized at

p, the fibre BZ/n becomes contractible since p does not divide n. Hence the map

Bf becomes a homotopy equivalence.

It remains to show that BSU(n) and BT1 are irreducible at p. For BT1, this is

obvious because BT}-, — K(Z^,2). For BSU(n), the argument is very similar to

the one used before. Namely, if BSU(n) split as a product at the prime p, then it

would follow that the representation of its Weyl group Sn in GL(n — 1 : Fp) would

be conjugate to a product. Just as before, it would follow that this representation

would, in fact, be reducible with respect to a nonzero 5n-invariant vector t'. But

such a vector would correspond to a generator of H2(BSU(n) : Fp) = 0. This

contradiction completes the proof of the Theorem.
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