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A p-LOCAL SPLITTING OF BU(n)
KENSHI ISHIGURO

ABSTRACT. Let p be a prime and let n > 1. A necessary and sufficient
condition that the classifying space BU(n) is p-equivalent to the product of
nontrivial spaces is that p does not divide n.

Let U(n) denote the Lie group of unitary n X n matrices, and let U = lim U (n).

In this paper we study the classifying space BU(n) and determine those primes at
which this space is equivalent to a product. The result is quite different from the
infinite case. Recall that when we pass to the limit there are two types of splitting
that occur. The first requires no localization;

BU ~ BT* x BSU.

The proof of this splitting is elementary, of course, but it does use the H-structure
on BU. The second type of splitting is truly p-primary. At each prime p, BU splits
into a product of p irreducible spaces

P
BU ~, [] B(2n,p).
n=1
This was first proved by Peterson [6]. A thorough account of this splitting is also
given in Zabrodsky’s book [8].
The main result of this paper is

THEOREM. If1 < n < oo, then BU(n) is irreducible at p if and only if p divides
n. If p does not divide n, then
BU(n) ~, BT x BSU(n)
and both factors are irreducible.

Most of the work in our proof involves showing that when p divides n, the
unstable algebra H*(BU(n);F,) is indecomposable over the Steenrod algebra. In
other words, it cannot be expressed as the tensor product of two nontrivial unstable
A*-algebras. Here A* denotes the Steenrod algebra modulo the two-sided ideal
generated by the Bockstein coboundary. Our proof uses reflection groups and the
methods and results of Adams and Wilkerson [2].

I would like to thank my advisor, C. W. Wilkerson, for his help and encourage-
ment.

1. A*-algebras. Let H* and E* be A*-algebras. We say that E* is a retract
of H* if there are A*-maps .

E* é H*
such that -7 = 1g..
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PROPOSITION 1. Suppose that H* = H*(BT™ : Fp)" where W is a suitable
group of A*-automorphisms. Then any A*-retract of H* is likewise the ring of
invariants in H*(BT* : F,) for some integer k and some group W'.

PROOF. The argument uses the main result of Adams and Wilkerson [2] and
the naturality of A*-maps. Suppose that E* is a retract of H*. Obviously, E* is
embedded in H*(BT™ : F,). Since E* = wH*, it is Noetherian. So it remains to
show that E* satisfies the two conditions in [2, Theorem 1.2]:

(i) E* is integrally closed in its field of fractions.

(ii) If y € E?9 and Q"y = 0 for any r > 1, then y = 2P for some z € E?4.

First, suppose a € ¢(E*). Here g(R) denotes the quotient field of an integral
domain R. Let i be the monomorphism of the fields g(E*) — g(H*) such that
t|[p+ = 1. If a is integral over E*, then the image i() is integral over H*. Since
H* is integrally closed, i(a) lies in H*. Let us write @ = a1/a2 where a; € E*.
Thus, we get 7(a1) = #(az) - Po for some fy € H*. Applying the map m, it follows
that

m-t(ar) =m-i(a2) - m(Bo), o1 = az-7(Bo).

Since m(0y) € E*, we conclude that « lies in E*. So E* is integrally closed. Next,
suppose y € E29 and Q"y = 0 for any r > 1. Since ¢ is an A*-map, then Q"i(y) = 0.
Thus there is € H?? such that i(y) = zP.

Once again we apply the map =, getting mi(y) = 7(zP),y = 7(z)P where 7(z) €
E?4, This completes the proof.

2. Generalized reflection groups. Let V be a finite-dimensional vector space
over a field k. A pseudo-reflection of V is a linear automorphism w such that
rank(l — w) = 1. We say that a vector u is a direction of a pseudo-reflection if it is
an eigenvector for the eigenvalue that is not equal to 1.

Let p:G —»GL(V) be a linear representation. A nonzero vector t € V is called
G-invariant if p(g)t = t for any ¢ € G. The representation p is called reducible
with respect to a G-invariant vector t if there is a hyperplane Vp in V such that
V =V & (t) and, for any g € G, the automorphism p(g) has the form v & 1 for
some vy €GL(Vp).

PROPOSITION 2. LetW be the group generated by pseudo-reflections wy, . .., w,.
Assume that each u; is a direction of w; and that t 1s W-invariant. Then W s re-
ducible with respect to t if and only if the vector t does not belong to the subspace
spanned by uy, ..., u,.

PROOF. Suppose that W is reducible and that V is the hyperplane. Let w
be one of the generators w;,...,w, and let u be a direction of w. We can write
u = vg + bt for some vg € Vp and b € k. If a is the eigenvalue which is not 1, it
follows that

0 = w(u) — au = w(vp + bt) — a(v + bt) = w(vp) — avp + b(1 — a)t.

Since w(vg) € Vo, we get b(1 —a) =0. So b =0 and u = vy € V. This shows that

Span(uy,...,u,) C V. Therefore, t does not belong to Span(uy,...,u,).
Conversely, if ¢ &€ Span(uy,...,u,), then there is a hyperplane Vy such that

Span(uy,...,u,) C Vpand V =V & (t). Given a generator w with direction u, we
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have a decomposition; V = (u) ®Ker(w—1). Let us write V,, = VoNKer(w—1). We
claim Vp = (u) ®V,,. In fact, we see that Ker(w—1) = V,, ®U for some subspace U.
Since Vo NU = 0, we get Vo ® U C V so that dimU < 1 and hence dimV,, > n —2.
We notice that V,, # Ker(w — 1) since t ¢ Vy. Therefore, dimV,, = n — 2. We
now see that w - Vy C Vp since w((u)) C (u) and w fixes V,, pointwise. Thus Vg
is invariant under the W-action and hence W is reducible with respect to ¢. This
completes the proof.

3. Proof of the Theorem. First assume that p divides n. By Borel (3,
Proposition 29.2], we see that H*(BU(n) : F,) = H*(BT™ : F,)5 where S,
is the symmetric group. Suppose that H*(BU(n) : F,) is A*-decomposable.
According to Proposition 1, there is an A*-isomorphism 6 from H*(BU(n) : Fp)
to H*(BT™ : F,)"* ® H*(BT™ : F,)"? for some integers n; and n, and some
suitable groups W; and W, because each A*-algebra is a retract. By Adams and
Wilkerson (2, Proposition 1.10], we can find an A*-map ¢ which makes the following
diagram commutative:

H*(BT":F,) % H*(BT™+m2 . F,)
7 , i
H*(BU(n) : F,) 2 H*(BT™ : F,)"* ® H*(BT™ : F,)"".

In this diagram the vertical maps are injective. If W = W; x Wy, then clearly
H*(BT™ :F,)"* @ H*(BT™ : F,)"? = H*(BT™ ™ : F,)V.

Recall that H*(BU(n) : F}) is a polynomial ring in n variables. Thus the maximum
number of elements in H*(BT™*"2 : F,,)¥ which can be algebraically independent
over F,, is n; so we have n; + n2 = n.

Recall that H*(BU(n) : Fp) — H*(BT™ : F,) is a Galois extension with Galois
group S,. Lang [5, p. 247] shows that for any w € W there exists o € S, such
that wg = ¢o. We claim that ¢ is invertible. In fact, if an A*-map v covers
60—, then 9 - ¢ covers §~! - § = identity; so the map 9 - ¢ differs from the identity
map by a permutation. Thus ¢ is injective and hence bijective for dimensional
reason. Consequently 0 = ¢~ *w¢. Thus it follows that, if H*(BU(n) : Fp) is A*-
decomposable, then the group S, is conjugate to Wi x W in GL(n : F;). It is well
known that the symmetric group is not the product of two nontrivial subgroups.
Consequently one of the W,’s must be trivial and it follows that this representation
of S, is reducible with respect to an S,-invariant vector.

Regard H2(BT™ : F,) as a vector space over F, with basis t1,...,t,. The
symmetric group acts on this vector space by the rule o(t;) = t,(;). Recall that S,
is generated by the transpositions o1,...,0,_1 where o; = (7,7 + 1) and that the
vector t = Y " t; is Sp-invariant.

Suppose p is odd. Each o; is a pseudo-reflection and the vector u; = ¢; —t;11 is a
direction. Since the representation of S, is reducible with respect to ¢, Proposition
2 shows that the S,,-invariant vector ¢t does not belong to Span(uy,...,uy—1). Thus
{u1,...,un—1,t} must be a basis. Equivalently the following n X n matrix must be
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nonsingular:

-1 1
Since the determinant of the matrix is n, the prime p does not divide n. This
contradicts our assumption.

In the case p = 2, it is enough to show that there is no such hyperplane V; when
n is even. We recall that V has basis t;,...,t,. Suppose that Vj exists. Since S,
acts on Vg, without loss of generality we may assume that t; + - - - + t,,, is contained
in Vy for some m < n. If m = 1, then we can find o € S,, such that t; = ot;. Thus
each t; belongs to V5. But dimVy = n — 1, thus m > 1. If m = 2, then for each

k=2,...,n we can find permutations 7y,...,7x—1 such that
k—1 k—1
i+t = Z(tr +try1) = Z 77 (t1 +t2).
r=1 r=1

Thus, each ¢; + tx € Vo and hence t = Y ;_,(t1 + tk) is contained in Vj since n is
even. This contradicts the assumption V = Vp @ (t). Therefore, 2 < m < n. Then
we have, however, that

tm+tm+l=tl+ +tm+0m(tl+ '+tm)€V0

and therefore t; + t2 € Vy. This is also a contradiction. We now conclude that Vj
does not exist.

Next assume that p does not divide n. Consider the map f: T x SU(n) — U(n)
given by

fna)=| . |4
‘2
where z € T and A € SU(n). It is easy to see that this map is a homomorphism
with fibre Z/n. On the level of classifying spaces, this map induces another fibration

BZ/n — BT x BSU(n) 2 BU(n).

Localization preserves fibrations; consequently, when this fibration is localized at
p, the fibre BZ/n becomes contractible since p does not divide n. Hence the map
Bf becomes a homotopy equivalence.

It remains to show that BSU(n) and BT" are irreducible at p. For BT, this is
obvious because BT(lp) = K(Z(y),2). For BSU(n), the argument is very similar to
the one used before. Namely, if BSU(n) split as a product at the prime p, then it
would follow that the representation of its Weyl group S, in GL(n — 1: F,) would
be conjugate to a product. Just as before, it would follow that this representation
would, in fact, be reducible with respect to a nonzero S,-invariant vector t'. But
such a vector would correspond to a generator of H2(BSU(n) : F,) = 0. This
contradiction completes the proof of the Theorem.
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