CONTINUITY OF THE INVERSE

HELMUT PFISTER

ABSTRACT. We present a simple device for proving the continuity of the inverse in a group with a locally Čech-complete topology which makes the multiplication continuous; our proof even works in case the topology is regular and locally strongly countably complete.

We denote by X a group with Hausdorff topology¹ such that the multiplication $X \times X \to X$ is continuous. The following propositions hold:

- (A) If X is locally compact, then X is a topological group [2].
- (B) If X is completely metrizable, then X is a topological group [7].
- (C) If X is locally Čech-complete, then X is a topological group [1].

It is well known that locally compact and completely metrizable spaces are Čech-complete ([4, 3.9.1 and 4.3.26], respectively), so Proposition (C) simultaneously generalizes Propositions (A) and (B). We shall give new and short proofs of these propositions.

Let e be the neutral element of X, $\mathfrak U$ the filter of e-neighborhoods; X is a topological group, if for every $U \in \mathfrak U$ there exists $V \in \mathfrak U$ with $V^{-1} \subset U$. Our proofs are based on the following

LEMMA. Let X be regular.

(a) For $U \in \mathfrak{U}$ there exists a sequence $(U_n)_{n \in \mathbb{N}}$ in \mathfrak{U} such that

$$\overline{U}_1^2 \subset U$$
, $\overline{U}_{n+1}^2 \subset U_n$ for $n \in \mathbb{N}$.

(b) If $(U_n)_{n\in\mathbb{N}}$ is chosen as in (a), $x_n\in U_n$, $y_k:=x_1\cdots x_k$, and $(y_k)_{k\in\mathbb{N}}$ has a clusterpoint, then for every $n\in\mathbb{N}$ there exists k>n such that $x_k^{-1}\in U_n$.

PROOF (a) This clearly follows from the continuity of the multiplication in (e, e) and the regularity of X.

(b) Let y be a clusterpoint of $(y_k)_{k\in\mathbb{N}}$, $n\in\mathbb{N}$. Since yU_{n+1} is a neighborhood of y, there exists k>n+1 such that $y_{k-1}\in yU_{n+1}$; and then

(1)
$$x_k^{-1} = y_k^{-1} y_{k-1} \in y_k^{-1} y U_{n+1}.$$

But $y_k^{-1}y$ is a clusterpoint of $(y_k^{-1}y_j)_{j\in\mathbb{N}}$, and for j>k we have

$$y_k^{-1}y_j=x_{k+1}\cdots x_j\in U_{k+1}\cdots U_j\subset U_k,$$

which implies

$$(2) y_k^{-1} y \in \overline{U}_k \subset U_{k-1}.$$

Received by the editors October 4, 1984 and, in revised form, December 17, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 22A05. ¹As to notation from topology we keep to [4].

From (1) and (2) we get $x_k^{-1} \in U_{k-1}U_{n+1} \subset U_{n+1}^2 \subset U_n$.

Now the proofs of the propositions. For $U \in \mathfrak{U}$ we chose a sequence $(U_n)_{n \in \mathbb{N}}$ as in the lemma and show by contradiction that there is an $n \in \mathbb{N}$ with $U_n^{-1} \subset U$.

PROOF OF (A). We may assume that U is compact. Supposing that $U_n^{-1} \not\subset U$ for every $n \in \mathbb{N}$ we chose $x_n \in U_n$ with $x_n^{-1} \not\in U$. Since $y_k = x_1 \cdots x_k \in U_1 \cdots U_k \subset U$ for every $k \in \mathbb{N}$, and U is countably compact, the sequence $(y_k)_{k \in \mathbb{N}}$ has a clusterpoint; so $x_n^{-1} \in U$ for some $n \in \mathbb{N}$ by the lemma, a contradiction.

PROOF OF (B). Let the topology of X be given by the complete metric d; we may assume that $(U_n)_{n\in\mathbb{N}}$ is a basis of \mathfrak{U} . Supposing that $U_n^{-1}\not\subset U$ for every $n\in\mathbb{N}$ we chose $x_n\in U_n$ with $x_n^{-1}\notin U$. Then $x_n\to e$ and so $xx_n\to x$ for every $x\in X$. Beginning with $\overline{x}_1:=x_1$ we thus inductively find a subsequence $(\overline{x}_n)_{n\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ such that for $\overline{y}_n:=\overline{x}_1\cdots\overline{x}_k$ we have $d(\overline{y}_k,\overline{y}_{k+1})<2^{-k}$ for $k\in\mathbb{N}$. Then $(y_k)_{k\in\mathbb{N}}$ is convergent. Since $\overline{x}_n\in U_n$, we get $\overline{x}_n^{-1}\in U$ for some $n\in\mathbb{N}$ from the lemma, a contradiction.

PROOF OF (C). We may assume that U is closed in X and Čech-complete with respect to the induced topology [4, 3.9.6]. There exists a sequence $(\mathcal{A}_n)_{n\in\mathbb{N}}$ of relatively open covers of U such that any family of closed subsets of U, which has the finite intersection property and contains sets of diameter less that \mathcal{A}_n for every $n \in \mathbb{N}$, has nonempty intersection [4, 3.9.2]. We may assume that U_n is open and has diameter less than \mathcal{A}_n .

(3) Every sequence
$$(x_n)_{n \in \mathbb{N}}$$
 with $x_n \in U_n$ has a clusterpoint in $K := \bigcap_{n=1}^{\infty} U_n$.

Indeed, $F_n := \{x_k : k > n\} \subset U_{n+1}$; since $\overline{F}_n \subset U_n$ and U_n has diameter less than \mathcal{A}_n , we obtain $\emptyset \neq \bigcap_{n=1}^{\infty} \overline{F}_n \subset K$.

(4)
$$K$$
 is a subgroup of X .

Indeed, clearly $K^2 \subset K$; we have to show that $K^{-1} \subset K$. For $x \in K$ we have $x_n := x \in U_n$, $n \in \mathbb{N}$, and $y_k = x_1 \cdots x_k = x^k \in K \subset U_k$; from (3) we know that $(y_k)_{k \in \mathbb{N}}$ has a clusterpoint. From our lemma we get $x_k^{-1} \in U_n$ for every $n \in \mathbb{N}$ and some k > n, i.e. $x^{-1} \in K$.

Supposing now that $U_n^{-1} \not\subset U$ for every $n \in \mathbb{N}$ we chose $x_n \in U_n$ with $x_n^{-1} \notin U$. From (3) we get a clusterpoint $a \in K$ of $(x_n)_{n \in \mathbb{N}}$. Then e is a clusterpoint of $(z_n)_{n \in \mathbb{N}}$, $z_n := a^{-1}x_{x+1}$; thus every $x \in X$ is a clusterpoint of $(x_n)_{n \in \mathbb{N}}$; from (4) it is clear that $z_n \in KU_{n+1} \subset U_n$. Beginning with $\overline{z}_1 := z_1$ and $V_1 := U_1$ we inductively find a subsequence $(\overline{z}_n)_{n \in \mathbb{N}}$ of $(z_n)_{n \in \mathbb{N}}$ and a sequence $(V_n)_{n \in \mathbb{N}}$ of open sets such that

(5)
$$y_k := \overline{z}_1 \cdots \overline{z}_k \in V_k, V_k \text{ has diameter less than } \mathcal{A}_k,$$
 and $\overline{V}_{k+1} \subset V_k \text{ for every } k \in \mathbf{N}.$

From (5) we obtain a clusterpoint of $(y_k)_{k\in\mathbb{N}}$ in the same way as in the proof of (3). Since $\overline{z}_n\in U_n$, we get $\overline{z}_k^{-1}\in U_1$ for some $k\in\mathbb{N}$ from the lemma. But it is $\overline{z}_k=a^{-1}x_{m+1}$ for some $m\geq k$, and $a^{-1}\in K$ by (4), and thus $x_{m+1}^{-1}=\overline{z}_k^{-1}a^{-1}\in U_1K\subset U_1^2\subset U$, a contradiction.

REMARKS. (a) It is well known that in a group with a locally compact or completely metrizable topology which makes the multiplication separately continuous the multiplication is continuous ([3, 6], respectively); it seems to be unknown whether Čech-completeness is sufficient too.

(b) In our proof of Proposition (C) we only used that X is regular and locally strongly countably complete in the sense of [5]; the proof of Brand does not work in this case.

REFERENCES

- 1. N. Brand, Another note on the continuity of the inverse, Arch. Math. 39 (1982), 241-245.
- 2. R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957), 372-373.
- 3. ____, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125.
- 4. R. Engelking, General topology, PWN, Warszawa, 1977.
- Z. Frolík, Baire spaces and some generalisations of complete metric spaces, Czechoslovak Math. J. 11 (1961), 237-247.
- 6. D. Montgomery, Continuity in topological groups, Bull. Amer. Math. Soc. 42 (1936), 879-882.
- 7. W. Żelasko, A theorem on B₀ division algebras, Bull. Acad. Polon. Sci. 8 (1960), 373-375.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN, THERESIENSTRASSE 39, D-8000 MÜNCHEN 2, FEDERAL REPUBLIC OF GERMANY