ON A QUESTION OF ARCHANGELSKIJ CONCERNING LINDELÖF SPACES WITH COUNTABLE PSEUDOCHARACTER

K. ALSTER

ABSTRACT. We give a negative solution to Archangelskij's problem by showing that there exists a Lindelöf space with countable pseudocharacter which does not admit a continuous one-to-one mapping onto a first countable Hausdorff space.

The aim of this note is to construct, in the usual axioms of set theory, an example mentioned in the abstract (see [Ar, Hypotheses 5.4 and 5.5]). S. Shelah obtained, under some set-theoretical assumptions, a Lindelöf space of cardinality greater than 2^{ω} with countable pseudocharacter (see [S and HJ]). From the well-known Archangelskij theorem it follows that Shelah's space does not admit a continuous one-to-one mapping onto a first countable Hausdorff space.

Let us denote by Q the set of rational numbers of the unit interval. The symbols ω and ω_1 stand for the first infinite and first uncountable ordinal numbers respectively.

EXAMPLE. There is a Lindelöf space X with countable pseudocharacter which does not admit a continuous one-to-one mapping onto a Hausdorff space satisfying the first axiom of countability.

Construction of X. There exists a family $\{A_{\alpha}: 1 \leq \alpha < \omega_1\}$ such that

(1) A_{α} is a countable set consisting of strictly increasing sequences of Q of length α for $1 \leq \alpha < \omega_1$;

(2) if $\alpha < \beta < \omega_1$, then $p_{\alpha}(A_{\beta}) = A_{\alpha}$; p_{α} stands for the projection onto the first α coordinates;

(3) if $a \in A_{\alpha}$ for $1 \leq \alpha < \omega_1$, then for every limit ordinal number $\beta < \alpha$, $a(\beta) = \sup\{a(\lambda): \lambda < \beta\}$ and $\sup\{a(\lambda): \lambda < \alpha\}$ are rational numbers of Q;

(4) if $\alpha < \beta < \omega_1$, $a \in A_{\alpha+1}$, $r \in Q$ and $a(\alpha) < r$, then there exists $b \in A_{\beta+1}$ such that $p_{\alpha+1}(b) = a$ and $b(\beta) = r$ (see [J, p. 91, the construction of the Aronszajn tree]).

Let us attach to $a \in A_{\alpha}$, for $1 \leq \alpha < \omega_1, x_a \in Q^{\omega_1}$ defined by

$$x_a(\beta) = \begin{cases} a(\beta), & \text{if } \beta < \alpha, \\ \sup\{a(\lambda) \colon \lambda < \alpha\}, & \text{if } \beta \ge \alpha. \end{cases}$$

Let $X = \bigcup \{ X_{\alpha} : 1 \le \alpha < \omega_1 \}$, where $X_{\alpha} = \{ x_{\alpha} : \alpha \in A_{\alpha} \}$, be a subspace of Q^{ω_1} . In [AI] it was proved that $Y \times X^{\omega}$ is Lindelöf provided that Y is a hereditarily Lindelöf space. We shall sketch the proof of the Lindelöf property in X for the sake of

©1985 American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

Received by the editors February 29, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54D20, 54A25.

completeness. Let
$$\mathscr{B}$$
 be a countable base of Q and \mathscr{V} an open covering of X . For $x \in X_{\alpha}, \alpha < \omega_1$, let
 $\mathscr{A}(x) = \left\{ B \in \mathscr{B} \colon x(\alpha) \in B \text{ and there are } \alpha < \beta(x, B) < \omega_1 \text{ and } V \in \mathscr{V} \right.$
such that $F(x, B, \beta(x, B)) = \left(\prod_{\lambda < \omega_1} F_{\lambda}\right) \cap X \subset V \right\}$,

where

$$F_{\lambda} = \begin{cases} \{x(\lambda)\}, & \text{if } \lambda \leq \alpha, \\ B, & \text{if } \lambda = \mathscr{B}(x, B), \\ Q, & \text{otherwise.} \end{cases}$$

Since X consists of increasing sequences, $\mathscr{A}(x) \neq \emptyset$ for every $x \in X$. Let

$$\beta_1 = \sup \{ \beta(x, B) \colon x \in X_1 \text{ and } B \in \mathscr{A}(x) \}.$$

Since X_1 and $\mathscr{A}(x)$, for $x \in X_1$, are countable sets, $\beta_1 < \omega_1$. If β_n is defined, then let

 $\beta_{n+1} = \sup \{ \beta(x, B) \colon x \in \bigcup \{ X_{\lambda} \colon \lambda \leq \beta_n + 1 \} \text{ and } B \in \mathscr{A}(x) \}$

and

$$\beta = \sup\{\beta_n : n \in N\}.$$

To finish the proof of the Lindelöf property of X it is enough to show that

 $X = \bigcup \{ F(x, B, \beta(x, B)) \colon x \in \bigcup \{ X_{\lambda} \colon \lambda < \beta \} \text{ and } B \in \mathscr{A}(x) \}.$

Let x be an element of X_{λ} for $\lambda \ge \beta$. Then $p_{\beta}(x)$ belongs to A_{β} . Let x' be a point of X_{β} such that $p_{\beta}(x') = p_{\beta}(x)$. There exist $B \in \mathcal{B}$, α_1 and α_2 and $V \in \mathscr{V}$ such that $x'(\beta) \in B$, $\alpha_1 < \beta < \alpha_2$ and $F = (\prod_{\lambda < \omega_1} F_{\lambda}) \cap X \subset V$, where

$$F_{\lambda} = \begin{cases} \{x'(\lambda)\}, & \text{if } \lambda < \alpha_1, \\ B, & \text{if } \lambda = \alpha_2, \\ Q, & \text{otherwise.} \end{cases}$$

Without loss of generality we can assume that $\sup\{x'(\lambda): \lambda < \alpha_1\} \in B$. Let v be an element of X_{α_1} such that $p_{\alpha_1}(v) = p_{\alpha_1}(x')$. Then $B \in \mathscr{A}(v)$ and $\beta(v, B) < \beta < \alpha_2$. It is easy to see that $x' \in F(v, B, \beta(v, B))$. Since $p_{\beta}^{-1}p_{\beta}(F(v, B, \beta(v, B))) = F(v, B, \beta(v, B))$ and $p_{\beta}(x') = p_{\beta}(x), x \in F(v, B, \beta(v, B))$. We conclude that X is a Lindelöf space.

If $x \in X_{\alpha}$, $\alpha < \omega_1$, then $\{x' \in X: p_{\alpha+2}(x') = p_{\alpha+2}(x)\} = \{x\}$ and $p_{\alpha+2}(X)$ is countable, so $\{x\}$ is a G_{δ} -subset of X.

To finish the proof of the properties of X it is enough to show that X does not admit a weaker Hausdorff topology τ which satisfies the first axiom of countability. Suppose not and let τ be a weaker Hausdorff topology on X satisfying the first axiom of countability. If $x \in X$ then there exists $\beta(x) < \omega_1$ such that for every open, in τ , neighbourhood U of x there is a basic open neighbourhood B(U) = $(\prod_{\lambda < \omega_1} B_{\lambda}(U)) \cap X$ of x, with respect to the Tychonoff topology, such that $B_{\lambda}(U) =$ Q for $\lambda \ge \beta(x)$ and $B(U) \subset U$. The existence of $\beta(x)$ is an immediate consequence of the fact that τ satisfies the first axiom of countability. Let $\beta_1 = \sup{\beta(x): x \in X_1}$. If β_n is defined, then let

$$\beta_{n+1} = \sup\{\beta(x) \colon x \in \bigcup\{X_{\lambda} \colon \lambda \leq \beta_n + 1\}\}$$

and $\beta = \sup\{\beta_n: n \in N\}$. Notice that β is a limit ordinal number less than ω_1 . Let x_1 and x_2 be points of X_β and $X_{\beta+2}$, respectively, such that $p_{\beta+1}(x_1) = p_{\beta+1}(x_2)$ and $x_1(\beta + 1) < x_2(\beta + 1)$. To prove that τ is not a Hausdorff topology it is enough to show that if U is an open neighbourhood of x_1 , with respect to τ , then there is a sequence $(y_n)_{n=1}^{\infty}$ of points of U converging to x_2 , with respect to the Tychonoff topology. Let $B \in \mathcal{B}$ and $\alpha_1, \alpha_2 < \omega_1$ be such that $\beta_1 < \alpha_1 < \beta < \alpha_2, x_1(\lambda) \in B$ if $\lambda \ge \alpha_1$ and $F = (\prod_{\lambda \le \omega}, F_{\lambda}) \cap X \subset U$, where

$$F_{\lambda} = \begin{cases} \{x_1(\lambda)\}, & \text{if } \lambda \leq \alpha_1, \\ B, & \text{if } \lambda = \alpha_2, \\ Q, & \text{otherwise.} \end{cases}$$

Let z_n be a point of X_{α_n+1} , where $\alpha_n = \max\{\beta_n, \alpha_1\}$, such that $p_{\alpha_n+1}(z_n) = p_{\alpha_n+1}(x_1)$. Since β is a limit ordinal number, $\alpha_n + 1 < \beta$. By the definition of $\beta(z_n)$, there exists a basic open neighbourhood $G(z_n) = (\prod_{\lambda < \omega_1} G_{\lambda}(z_n)) \cap X$ of z_n , with respect to Tychonoff topology, such that $G_{\lambda}(z_n) = Q$, if $\lambda \ge \beta(z_n)$ and $G(z_n) \subset U$. Notice that $\beta(z_n) < \beta$ for $n \in N$. Let y_n be an element of $G(z_n) \cap X_{\beta+2}$ such that $p_{\alpha_n+1}(z_n) = p_{\alpha_n+1}(y_n)$ and $y_n(\lambda) = x_2(\lambda)$ for $\lambda \ge \beta$. The existence of y_n is an easy consequence of (4), $\beta(z_n) < \beta$, $z_n(\lambda) \le x_1(\lambda)$, for $\lambda < \omega_1$, $p_{\beta+1}(x_1) = p_{\beta+1}(x_2)$, and $x_1(\beta + 1) < x_2(\beta + 1)$. If $G = (\prod_{\lambda < \omega_1} G_{\lambda}) \cap X$ is a basic open neighbourhood of x_2 , in the Tychonoff topology, $\alpha = \sup\{\lambda < \beta: G_{\lambda} \ne Q\}$ and k is such that $\beta_k > \alpha$, then $y_n \in G$ provided that $n \ge k$, so we conclude that $(y_n)_{n=1}^{\infty}$ converges to x_2 in the Tychonoff topology.

REMARK. Let Z be a subspace of I^{ω_1} , where I stands for the unit interval, of all points of I satisfying the following conditions:

(i) for every $\varepsilon > 0$ and $z \in Z$, { $\alpha < \omega_1 : z(\alpha) > \varepsilon$ } is finite;

(ii) for every $z \in Z$, { $\alpha < \omega_1 : z(\alpha) > 0$ } is an initial interval of ω_1 .

It is easy to see that Z has countable pseudocharacter. In [C] it was proved that Z has the Lindelöf property. Using our method one can show that Z does not admit a continuous one-to-one mapping onto a first countable Hausdorff space.

References

[A1] K. Alster, Some remarks on another Michael's problem concerning the Lindelöf property in the Cartesian products (in preparation).

[Ar] A. V. Archangelskij, On cardinal invariants, General Topology and its Relations to Modern Analysis and Algebra. III (Proc. Third Prague Topological Sympos. 1971), Academia, Prague, 1972, pp. 37-45.

[C] H. H. Corson, The weak topology of Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.

[HJ] A. Hajnal and I. Juhász, Lindelöf spaces a la Shelah, Colloq. Math. Soc. János Bolyai 23 (1978), 555-567.

[J] T. J. Jech, Lectures in set theory with particular emphasis on the method of forcing, Lecture Notes in Math., vol. 217, Springer-Verlag, 1971.

[S] S. Shelah, Handwritten notes, 1978.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES, SNIADEKICH 8, 00-950 WARSZAWA, POLAND