BOUNDS ON THE MAXIMUM NUMBER OF VECTORS WITH GIVEN SCALAR PRODUCTS

M. DEZA AND P. FRANKL

ABSTRACT. Suppose M, L are sets of real numbers, $V = \{v_1, \ldots, v_m\}$ is a collection of vectors in \mathbb{R}^n , having k nonzero coordinates all from M and satisfying $(v_i, v_j) \in L$ for $i \neq j$. Theorem 1.1 establishes a polynomial upper bound for |V|, generalizing previous results for subsets of a set and $(0, \pm 1)$ -vectors. Theorem 1.4 asserts that if |L| = s then $|V| \leq {\binom{n+s}{s}}$. For $M = \{-1, 1\}$, L = [-(k-1), k-1]. Theorem 1.5 gives $|V| \leq 2^{k-1} {\binom{n}{k-1}}/k$, where equality holds if and only if V is a "signed" (n, k, k - 1) Steiner-system.

1. Introduction. Let $V = \{v_1, \ldots, v_m\}$ be a set of vectors in \mathbb{R}^n , the *n*-dimensional Euclidean space. For L, M subsets of real numbers, $0 \notin M$ and a positive integer k, we define $\mathscr{V}(n, k, M, L)$ as the collection of all V satisfying the following three conditions:

(i) v_i has exactly k nonzero coordinates,

(ii) each nonzero coordinate of v_i is from M,

(iii) $(v_i, v_j) \in L$ holds for $1 \le i \le j \le m$.

The aim of this paper is to present upper bounds for the maximum size of V with $V \in \mathscr{V}(n, k, M, L)$.

Let us denote this maximum by m(n, k, M, L). Note that m(n, k, M, L) can be infinite for some choices of the parameters. For $M = \{1\}$ this problem has been widely investigated (cf. e.g. [FrW]). The case $M = \{-1, +1\}$ was the subject of [DF1].

Define $M^+ = \{m \in M: m > 0\}, M^- = \{-m: m \in M, m < 0\}.$ Let us also define $l_{sup} = \sup\{l: l \in L\}, m_{inf} = \inf\{|m|: m \in M\}.$

THEOREM 1.1. Suppose that L^+ can be covered by r intervals, each of length less than $m_{inf}^2/2$; then there exists a constant $c(k, l_{sup}, m_{inf})$ depending only on k, l_{sup} and m_{inf} such that we have

$$m(n, k, M, L) \leq c(k, l_{\sup}, m_{\inf})\binom{n}{r}m(k, k, M^+ \cup M^-, L^+).$$

The determination of m(k, k, M, L) is a number theoretic question. It is easy to give examples for $m(k, k, M, L) = \infty$ (e.g. $L = Q = \{\text{rationals}\}, |M \cap Q| = \infty$) or for m(k, k, M, L) = 1 (e.g. $L = \{\text{irrationals}\}, M \subset Q$). Note that for |M| finite

©1985 American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

Received by the editors July 27, 1984 and, in revised form, November 14, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 05C35, 51M05; Secondary 51E99, 51K99.

 $m(k, k, M, L) \leq |M|^k$ holds. It is a consequence of Theorem 1 in [Fr] that $m(k, k, M, \{1\}) < (2k)^{2k+1}$. We prove

PROPOSITION 1.2. If $|L^+|$ is finite then

$$m(k, k, M, L) \leq (2e)^k \binom{|L^+|+k}{k}.$$

After preparations made in §2 we prove Theorem 1.1 in §3. Let us note the following

COROLLARY 1.3. If $|L^+| \leq r$ and $m_{inf} > 0$, then we have $m(n, k, M, L) \leq c(k, L, M)\binom{n}{r}$.

Note that for $M = \{1\}$ the statement of the corollary (with c(k, L, M) = 1) is a classical theorem of Ray-Chaudhuri and Wilson [**RW**].

For |L| fixed we have the following more general bound:

THEOREM 1.4. Suppose $V = \{v_1, \ldots, v_m\}$ is a set of distinct vectors in \mathbb{R}^n so that, for each $v \in V$ and for a fixed positive integer s, (v, v') takes up at most s values (i.e., $|\{(v, v'): v \neq v' \in V\}| \leq s$). Then $|V| \leq {n+s \choose s}$.

Note the analogy with the following result of Bannai, Bannai, Stanton and Blokhuis. Recall that $S \subset \mathbb{R}^n$ is called an s-distance set if $|\{d(x, y): x, y \in S, x \neq y\}| = s (d(x, y))$ is the euclidean distance of x and y).

THEOREM [BBS, B1]. If S is an s-distance set in \mathbb{R}^n , then $|S| \leq \binom{n+s}{s}$.

Let us note also that if all vectors have equal length, say b, then $d(x, y)^2 = (x - y, x - y) = 2b - 2(x, y)$. That is, the number of different distances and scalar products is the same. For this case there exists the stronger bound of Delsarte, Goethals and Seidel:

THEOREM [DGS]. If S is an s-distance set on the unit sphere in \mathbb{R}^n , then $|S| \leq \binom{n+s-1}{s} + \binom{n+s-2}{s-1}$.

Recall that a (n, k, t) partial Steiner-system ζ is a family of k-subsets of $\{1, 2, ..., n\}$ such that every t-element subset is contained in at most one member of ζ . Clearly ζ satisfies $|\zeta| \leq {n \choose t}/{k \choose t}$ $(n \geq k > t \geq 1)$. In case of equality, ζ is called a Steiner-system. Very few Steiner-systems with t > 3 and no Steiner-systems with $t \geq 6$ are known. However, recently Rödl [**R**ö] showed that for fixed k, t and n tending to infinity there exist partial Steiner-systems satisfying

$$|\zeta| \ge (1 - o(1)) {n \choose t} / {k \choose t}.$$

Given a partial Steiner-system \mathscr{P} we may replace each $P \in \mathscr{P}$ by a collection of vectors $V_P \in \mathscr{V}(k, k, \{\pm 1\}, \{0, \pm 1, \dots, \pm (t-1)\})$. Then $V_{\mathscr{P}} = \bigcup_{P \in \mathscr{P}} V_P$: $P \in \mathscr{P}$ is in $\mathscr{V}(n, k, \{\pm 1\}, [-(t-1), t-1])$.

The maximum possible size of V_p is a coding theoretical problem. Here we consider only the case t = k - 1. Then the only restriction on $v, v' \in V_p$ is that $v \neq -v'$. Consequently, $|V_p| \leq 2^{k-1}$ and there are $2^{2^{k-1}}$ different ways to achieve equality here, namely choose exactly one out of each pair $\{v, -v\}$. If $|V_p| = 2^{k-1}$ for all $P \in \mathcal{P}$, then $V_{\mathcal{P}}$ is called an *antipodally signed* partial Steiner-system.

THEOREM 1.5. Suppose $V \in \mathscr{V}(n, k, \{\pm 1\}, [-(t-1), t-1])$. Then

$$|V| \leq \frac{\binom{n}{t}}{\binom{k}{t}} 2^{t-1}(k-t+1),$$

moreover, for k = t + 1, equality is possible if and only if $V = V_{\zeta}$ for some (n, k, k - 1)Steiner-system ζ .

2. General reductions. For a vector $v = (v^1, v^2, ..., v^n)$ let us define the support $S(v) = \{i: v^i \neq 0, 1 \le i \le n\}.$

LEMMA 2.1. For any set of vectors V with |S(v)| = k for all $v \in V$ there exists a partition $X_1 \cup X_2 \cup \cdots \cup X_k = \{1, 2, \dots, n\}$ such that the set $V' = \{v \in V: |S(v) \cap X_i| = 1, i = 1, \dots, k\}$ satisfies $|V'| \ge (k!/k^k)|V|$.

PROOF. Let $X_1 \cup \cdots \cup X_k$ be a random equipartition of $\{1, 2, \ldots, n\}$. Thus $|X_i| = \lfloor n/k \rfloor$ or $\lfloor n/k \rfloor$. For a given $v \in V$ the probability of $|S(v) \cap X_i| = 1$ for $i = 1, \ldots, k$ is given by $|X_1| \cdots |X_k| / {n \choose k} \ge k! / k^k$. Consequently, the expected number of members of V' is at least $(k! / k^k) |V|$ and the statement follows. \Box

Note that $k!/k^k > e^{-k}$, thus by considering V', we only lose a constant factor. The family V' is called a *transversal* family of vectors.

LEMMA 2.2. To any transversal family $V' \in \mathscr{V}(n, k, M, L)$ there exists $V'' \in \mathscr{V}(n, k, M^+ \cup M^-, L^+)$ satisfying $|V''| \ge 2^{-k}|V'|$.

PROOF. Associate with each $v \in V'$ a (± 1) -vector of length k by defining the *i*th entry +1 if and only if the coordinate of v in $S(v) \cap X_i$ is positive. There are 2^k different (± 1) -vectors of length k. Thus we may choose one, say $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k)$, which has been associated with at least $2^{-k}|V'|$ vectors. Let V^* be this collection and let V'' be the collection which we obtain from V^* by applying the orthogonal transformation of multiplying the *i*th coordinate of $v \in V^*$ by ε_i , $V'' \in \mathscr{V}(n, k, M^+ \cup M^-, L^+)$ follows. \Box

Note that Lemmas 2.1 and 2.2 imply

COROLLARY 2.3.

$$m(n, k, m, L) \leq (2e)^{k} m(n, k, M^{+} \cup M^{-}, L^{+}).$$

COROLLARY 2.4.

$$m(n, k, L) \leq m(n, k, \{\pm 1\}, L) \leq (2e)^{\kappa} m(n, k, L^{+}).$$

For a set of vectors V we define $\zeta(V) = \{S(v) : v \in V\}$.

PROPOSITION 2.5.

$$|V| \leq |\zeta(V)| m(k, k, M, L). \quad \Box$$

Suppose V is a transversal family of vectors (for the partition $X_1 \cup \cdots \cup X_k$). Then $\zeta(V)$ is a family of transversals. For a subset $H \subset X_1 \cup \cdots \cup X_k$ we define the projection $\pi(H)$ of H by $\pi(H) = \{i: H \cap X_i \neq \emptyset\}$.

Recall that a sunflower of size t and with center C is a collection F_1, \ldots, F_t of sets with $F_i \cap F_j = C$ for $1 \le i \le j \le t$.

A family of subsets \mathscr{L} is called a *meet semilattice* if $L, L' \in \mathscr{L}$ imply $L \cap L' \in \mathscr{L}$. Also $\mathscr{I}(S, \zeta) = \{S \cap S' : S' \in \zeta\}.$

LEMMA 2.6 (FUREDI [Fü]). Given k, t, there exists a positive constant c = c(k, t) such that any transversal family ζ of k-subsets contains a subfamily ζ^* satisfying:

(i) $|\zeta^*| > c(k, t) |\zeta|$,

(ii) every $C \in \mathscr{I}(S, \zeta^*)$ is the center of a sunflower of size $t (S \in \zeta^*)$,

(iii) $\mathscr{I}(S, \zeta^*)$ is a meet semilattice,

(iv) the family $\pi(\mathscr{I}(S, \zeta^*)) = \{\pi(C): C \in \mathscr{I}(S, \zeta^*)\}$ is independent of the choice of $S \in \zeta^*$.

For $\zeta = \zeta(V)$ let us apply Lemma 2.6 with t = 2 and set $\mathscr{I}_0 = \pi(\mathscr{I}(S, \zeta^*))$.

A set $G \subset \{1, 2, ..., k\}$ is called a generator set of \mathscr{I}_0 if $G \subset \mathscr{K} \in \mathscr{I}_0$ implies $\mathscr{K} = \{1, 2, ..., k\}$.

PROPOSITION 2.7. Suppose \mathscr{I}_0 has a generator set G of size r. Then $|\zeta^*| \leq \binom{n}{r}$.

PROOF. For each $S \in \zeta^*$ choose $G(S) \subset S$ so that $\pi(G(S)) = G$ holds. Now $S' \in \zeta^*$, $G(S) \subset S'$ imply $G(S) \subseteq S \cap S' \in \mathscr{I}(S, \zeta^*)$. Thus S' = S follows. Consequently, the G(S) are all distinct *r*-subsets of $X_1 \cup \cdots \cup X_k$. This yields $|\zeta^*| \leq \binom{n}{r}$. \Box

Recall that a *chain of length* r is a family A_0, A_1, \ldots, A_r with $A_0 \subset A_1 \subset \cdots \subset A_r$.

PROPOSITION 2.8. Suppose \mathscr{I}_0 contains no chain of length r + 1. Then \mathscr{I}_0 has a generator set of size at most r.

PROOF. Apply induction on r. If r = 1 then \mathscr{I}_0 contains at most one proper subset \mathscr{B} of $\{1, 2, \ldots, k\}$. Thus $\{i\}$ is a generator for all $1 \le i \le k, i \notin \mathscr{B}$.

Suppose $\mathscr{B} \subsetneq \{1, 2, ..., k\}$, \mathscr{B} is a maximal element in \mathscr{I}_0 . Define $\tilde{\mathscr{I}} = \{\mathscr{B} \cap \mathscr{B}_0: \mathscr{B}_0 \in \mathscr{I}_0\}$. Then $\tilde{\mathscr{I}}$ has no chain of length r. Consequently, it has a generator set H of size at most r-1. Now $G = H \cup \{i\}$ is a generator for \mathscr{I}_0 whenever $i \in (\{1, 2, ..., k\} - H)$. \Box

3. The proof of Theorem 1.1. In view of Corollary 2.3 and Lemma 2.1 we may assume $V \in \mathscr{V}(n, k, M^+ \cup M^-, L^+)$, V is a transversal family of vectors. By omitting at most n vectors we may suppose no $v \in V$ has a coordinate position $v^{(i)}$ with $v^{(i)} > \sqrt{I_{sup}}$.

Let us set $\gamma = m_{inf}^2 / 2k \sqrt{l_{sup}}$. With $v \in V$, having positive coordinate α_i in X_i we associate a sequence of integers (t_1, \ldots, t_k) where $t_i = [\alpha_i / \gamma]$.

This defines a partition of V into at most $\left[\sqrt{l_{sup}}/\gamma\right]^k$ parts. This constant factor can be incorporated into $c(k, l_{sup}, m_{inf})$, thus we may suppose: the same sequence (t_1, \ldots, t_k) is associated with each $v \in V$.

In view of (2.1) and Lemma 2.6, it will be sufficient to show that \mathscr{I}_0 —associated with $\zeta^*(V)$ —contains no chain of length r + 1.

Fix $v \in V$ with $S = S(v) \in \zeta^*(V)$.

Suppose for contradiction, $A_0 \subset A_1 \subset \cdots \subset A_r \subset A_{r+1} = \{1, 2, \dots, k\}$ is a chain in \mathscr{I}_0 . Let $B_0 \subset B_1 \subset \cdots \subset B_{r+1}$ be the corresponding chain in $\mathscr{I}(S, \zeta^*(V))$. Then for $i = 0, 1, \dots, r$ there exists $v_i \in V$ with $s(v_i) \cap S = B_i$. By Dirichlet's principle there are two vectors, say $v_i, v_j, i < j$, such that (v, v_i) and (v, v_j) are in the same interval of length less than $m_{inf}^2/2$.

Taking into consideration $|\beta_{\gamma} - \beta'_{\gamma}| < \gamma$ and $(v, v_j) - (v, v_i) < m_{inf}^2/2$, we infer

$$\frac{1}{2}m_{\inf}^2 > (v, v_j) - (v, v_i) = \sum_{\nu \in B_i} \alpha_{\nu} (\beta_{\nu}' - \beta_{\nu}) + \sum_{\nu \in B_j - B_i} \alpha_{\nu} \beta_{\nu}'$$
$$> -\gamma k \sqrt{l_{\sup}} + m_{\inf}^2 \ge \frac{1}{2}m_{\inf}^2.$$

A contradiction. \Box

4. The proof of Proposition 1.2. In view of Corollary 2.3, it is sufficient to consider the case $L = L^+$, and show $m(k, k, M, L) \leq {\binom{|L|+k}{k}}$. However this is a special case of Theorem 1.4. \Box

5. Exterior products and covering points by hyperplanes. Denote by P^n the real projective space of dimension n. A hyperplane is a subspace of dimension n - 1.

THEOREM 5.1. Suppose $T \subset P^n$, $T = \{x_1, \ldots, x_m\}$, s a positive integer and for every point x_i there exist s hyperplanes $H_1^{(i)}, \ldots, H_s^{(i)}$ so that $\{x_i, x_{i+1}, \ldots, x_m\} \cap (H_1^{(i)} \cup \cdots \cup H_s^{(i)}) = \{x_{i+1}, \ldots, x_m\}$. Then $|T| \leq \binom{n+s}{s}$.

PROOF. Let π be a polarity of P^n . Then $\pi(T) = \{\pi(x_i): 1 \le i \le m\}$ is a collection of hyperplanes satisfying the following:

(i) For $1 \le i \le m$ there exist s points $(\pi(H^{(i)}), \dots, \pi(H_s^{(i)}))$, none of which is on $\pi(x_i)$ so that $\pi(x_i)$ contains at least one of them for j > i.

If we replace in (i) the condition j > i by $i \neq j$ then the upper bound $|T| = |\pi(T)| \leq \binom{n+s}{s}$ is just Theorem 4.8 in [Lo]. A slight modification of Lovász's argument shows that the s-element sets $\{\{\pi(H_1^{(i)}), \ldots, \pi(H_s^{(i)})\}: 1 \leq i \leq m\}$ which are points in the sth symmetric power of P^n , are independent for $1 \leq i \leq m$. Consequently, their number m does not exceed the dimension $\binom{n+s}{s}$. \Box

Next we derive Theorem 1.4.

Arrange the vectors in V so that $|v_1| \ge |v_2| \ge \cdots \ge |v_m|$. Then $(v_i, v_i) > (v_i, v_j)$ holds for $i < j \le m$. Let $\lambda_1^{(i)}, \ldots, \lambda_s^{(i)} < (v_i, v_i)$ be such that $(v_i, v_j) \in \{\lambda_1^{(i)}, \ldots, \lambda_s^{(i)}\}$ holds for all $i < j \le m$. Let us define

$$G_t^{(i)} = \left\{ v \in \mathbb{R}^n \colon (v_1, v) = \lambda_t^{(i)} \right\}, \qquad 1 \le t \le s.$$

Then $G_t^{(i)}$ is a hyperplane in \mathbb{R}^n . Define $H_t^{(i)}$ as the unique hyperplane in \mathbb{P}^n containing $G_t^{(i)}$.

Then $\{v_1, \ldots, v_n\}$ and the hyperplanes $H_t^{(i)}$ fulfill the assumptions of Theorem 5.1. Consequently, $|V| = m \leq {n+s \choose s}$. \Box

As pointed out by the referee, Theorem 1.4 can be deduced also using the approach of Koornwinder [Ko].

6. Signed Steiner systems. For a set of vectors $V = \{v_1, \ldots, v_m\}$ define $-V = \{-v_1, \ldots, -v_m\}$.

PROPOSITION 6.1. If $L^+ = L^-$ then the following two conditions are equivalent: (i) $V \in \mathscr{V}(n, k, \{\pm 1\}, L)$, (ii) $V \cup (-V) \in \mathscr{V}(n, k, \{\pm 1\}, L \cup \{-k\})$. \Box

COROLLARY 6.2. If $-k \notin L$, $L^+ = L^-$ then

$$2m(n, k, \{\pm 1\}, L) = m(n, k, \{\pm 1\}, L \cup \{-k\})$$

holds. \Box

In view of Proposition 6.1 and Corollary 6.2, Theorem 1.5 will follow once we proved the next theorem.

THEOREM 6.3. Suppose $V \in \mathscr{V}(n, k, \{\pm 1\}, \{0, \pm 1, \dots, \pm (t-1)\} \cup \{-k\})$. Then

(6.1)
$$|V| \leq \frac{\binom{n}{t}}{\binom{k}{t}} 2^{t} (k-t+1).$$

Moreover, for k = t + 1 equality is possible if and only if there is an (n, k, t)Steiner-system ζ so that V consists of all $(0, \pm 1)$ -vectors v with $S(v) \in \zeta$.

PROOF OF THEOREM 6.3. There are $2^{t} \binom{n}{t} (0, \pm 1)$ -vectors with t nonzero coordinates. For such a vector w and $v \in \mathscr{V}$ define w < v if (w, v) = t (or equivalently if v - w is a $(0, \pm 1)$ -vector with k - t nonzero entries). Define $V_w = \{v - w: w < v \in V\}$. Then $V_w \in \mathscr{V}(n - t, k - t, \{\pm 1\}, \{-1, -2, \dots, -2t + 1\})$.

A theorem of Delsarte, Goethals and Seidel [DGS] yields $|V_w| \leq k - t + 1$.

Since for each $v \in V$ there are $\binom{k}{t}$ choices of w, w < v, (6.1) follows.

Suppose now equality holds in (6.1), k = t + 1. By our argument, $|V_w| = 2$ must hold for all w. Suppose w < v, w < v'. Since $(v, v') \le k - 2 < t$, we infer S(v) = S(v'), and v and v' have opposite sign in S(v) - S(w). Set S = S(v).

We claim that all $(0, \pm 1)$ -vectors u with S(u) = S are in V. Indeed, the contrary implies the existence of two $(0, \pm 1)$ -vectors u_1, u_2 with $S(u_1) = S(u_2) = S$, $u_1 \in V$, $u_2 \notin V$ and u_1 and u_2 differ in only one position (i.e. $(u_1, u_2) = k - 2$)). Let w_1 be the unique $(0, \pm 1)$ -vector with t = k - 1 nonzero entries satisfying $w_1 < u_1, w_1 < u_2$. The equality in (6.1), as we have shown above, implies, via $|V_{w_1}| = 2$, that $u_2 \in V$, a contradiction. Now consider $\zeta = \{S(v): v \in V\}$. By the above we have $|V| = 2^k |\zeta|$, that is $|\zeta| = \binom{n}{k-1} / \binom{k}{k-1}$. Clearly $|S \cap S'| \leq k-2$ holds for $S, S' \in \zeta$, thus ζ is a (n, k, k-1). Steiner-system and the statement follows. \Box

7. Equidistant sets. In the case $M = \{\pm 1\}, L = \{l\}$ one can get tight bounds. For vectors w, v define $w \le v$ if w and v coincide in each nonzero coordinate of w.

THEOREM [**DF2**]. Suppose $k > l \ge 1$, $V \in \mathscr{V}(n, k, \{\pm 1\}, \{l\})$ and $|V| > \max\{(k-l)^2 + (k-l) + 1, (k-l)(l+2)\}$. Then there exists a $(0, \pm 1)$ -vector w with l nonzero positions so that w < v holds for all $v \in V$ (and consequently the vectors $\{v - w: v \in V\}$ are pairwise orthogonal).

The corresponding theorem for $M = \{1\}$ was proved in [De].

References

[BBS] E. Bannai, E. Bannai and D. Stanton, An upper bound for the cardinality of an s-distance set in real Euclidean space, Combinatorica 3 (1983), 147–152.

[B1] A. Blokhuis, Few-distance sets, CWI Tract 7 (1984).

[DGS] Ph. Delsarte, J.-M. Goethals and J. J. Seidal, Spherical codes and designs, Geom. Dedicata 6 (1977), 363-388.

[De] M. Deza, Une propriété extrémale des plans projectifs finis dans une classe de codes équidistants, Discrete Math. 6 (1973), 343-352.

[DF1] M. Deza and P. Frankl, On t-distance sets of $(0, \pm 1)$ -vectors, Geom. Dedicata 14 (1983), 293-301. [DF2] _____, Every large set of equidistant $(0, \pm 1, -1)$ -vectors forms a sunflower, Combinatorica 1

(1981), 225–231.

[Fr] P. Frankl, On large vector systems with equal scalar products, Europ. J. Combinatorics 2 (1980), 123-125.

[FrW] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357-368.

[Fü] Z. Füredi, On finite set systems in which every intersection is a kernel of a star, Discrete Math. 47 (1983), 129–132.

[GRS] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory, Wiley, New York, 1980.

[Ko] T. Koornwinder, A note on the absolute bound for systems of lines, Proc. Koninklijke Nederl. Akad. Wet. **79** (1976), 152–153.

[Lo] L. Lovász, Flats in matroids and geometric graphs, Comb. Surveys: Proc. of 6th British Comb. Conference (P. J. Cameron, ed.), Academic Press, New York, 1977, pp. 45–87.

[RW] D. K. Ray-Chaudhuri and R. M. Wilson, On t-designs, Osaka J. Math. 12 (1975), 737-744.

[Rö] V. Rödl, A packing and covering problem, Europ. J. Combinatorics 6 (1986) (to appear).

Département de Mathématiques, Université de Paris VII, CNRS, 2 Place Jussieu, 75005 Paris, France