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BOUNDS ON THE MAXIMUM NUMBER OF VECTORS

WITH GIVEN SCALAR PRODUCTS

M. DEZA AND P. FRANKL

Abstract. Suppose M, L are sets of real numbers, V ~ {vx,... ,vm} is a collection

of vectors in R". having A nonzero coordinates all from M and satisfying (vf, v¡) £ L

for i #y. Theorem 1.1 establishes a polynomial upper bound for \V\. generalizing

previous results for subsets of a set and (0, ± 1 (-vectors. Theorem 1.4 asserts that if

|i.| = s then \V\ *iC?s). For M= {-1,1}, L- [-(k - 1), k - 1], Theorem 1.5

gives \V\*i 2A-1(A"1)/A\ where equality holds if and only if V is a "signed"

(n.k.k - 1) Steiner-system.

1. Introduction. Let V = {vl,. ..,vm} be a set of vectors in R", the «-dimensional

Euclidean space. For L, M subsets of real numbers, 0ÍM and a positive integer k,

we define y(n, k, M, L) as the collection of all V satisfying the following three

conditions:

(i) f, has exactly k nonzero coordinates,

(ii) each nonzero coordinate of v, is from M,

(iii) (u,, Vj) g L holds for 1 < i <j < m.

The aim of this paper is to present upper bounds for the maximum size of V with

Kg -f(n,k, M, L).

Let us denote this maximum by m(n, k, M, L). Note that m(n, k, M, L) can be

infinite for some choices of the parameters. For M = {1} this problem has been

widely investigated (cf. e.g. [FrW]). The case M = {-1, +1} was the subject of

[DF1].
Define M+= {m g M: m > 0}, M= {-m: m g M, m < 0}.

Let us also define /sup = sup{7: / g L), mini = inf{|w|: w g M}.

Theorem 1.1. Suppose that L+ can be covered by r intervals, each of length less than

wmf/2; then there exists a constant c(k, /sup, mmf) depending only on k, I and mmi

such that we have

m(n, k, M, L) < c(k, /sup, mini)(")m(k, k, M+U M~, L + ).

The determination of m(k, k, M, L) is a number theoretic question. It is easy to

give examples for m(k, k, M, L) = oo (e.g. L = Q — {rationals}, \M n Q\ = oo) or

for m(k, k, M,L)=l (e.g. L = {irrationals}, M c Q). Note that for \M\ finite
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m(k, k, M, L) < \M\k  holds.  It  is  a  consequence of Theorem  1   in  [Fr]   that

m(k,k,M,{l})< (2k)2k + l. We prove

Proposition 1.2. If \L+\ is finite then

m(k,k,M,L)^(2e)k{^^k).

After preparations made in §2 we prove Theorem 1.1 in §3.

Let us note the following

Corollary 1.3. // \L + \ < r and mml > 0, then we have m(n, k, M, L) <

c(k, L, MX?).

Note that for M = {1} the statement of the corollary (with c(k, L, M) = 1) is a

classical theorem of Ray-Chaudhuri and Wilson [RW].

For \L\ fixed we have the following more general bound:

Theorem 1.4. Suppose V = [v1,. ..,vm} is a set of distinct vectors in R" so that, for

each v G V and for a fixed positive integer s, (v, v') takes up at most s values (i.e.,

\{(v,v'): d^b's V}\ < s). Then\V\ < ("+*).

Note the analogy with the following result of Bannai, Bannai, Stanton and

Blokhuis. Recall that 5 c R" is called an s-distance set if \{d(x, y): x, y g S,

x ^ y}\ — s (d(x, y) is the euclidean distance of x and y).

Theorem [BBS, Bl]. If S is an s-distance set in R", then \S\ < ("+/)•

Let us note also that if all vectors have equal length, say b, then d(x, y)2 = (x —

y, x - y) = 2b — 2(x, y). That is, the number of different distances and scalar

products is the same. For this case there exists the stronger bound of Delsarte,

Goethals and Seidel:

Theorem [DGS]. If S is an s-distance set on the unit sphere in R", then \S\ < (" + J_1)

+ r;-T2).

Recall that a (n, k, t) partial Steiner-system f is a family of /c-subsets of

(1,2,...,«} such that every r-element subset is contained in at most one member of

f. Clearly f satisfies |f| < (")/(f) (« > k > t > 1). In case of equality, f is called a

Steiner-system. Very few Steiner-systems with t > 3 and no Steiner-systems with

t > 6 are known. However, recently Rödl [Ró] showed that for fixed k, t and n

tending to infinity there exist partial Steiner-systems satisfying

\t\>{l-o{l)){nt)/{kt\

Given a partial Steiner-system 3s we may replace each P g 3d by a collection of

vectors Vp g V{k, fc,{±l},{0, ±1,...,±(< - 1)}). Then V&= \JPeäeVP: P g 3sis

in r(n,k,{± !},[-(/ -!),/-!]).
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The maximum possible size of VP is a coding theoretical problem. Here we

consider only the case t = k — I. Then the only restriction on v, v' g Vp is that

v # -v'. Consequently, \VP\ < 2k~l and there are 22'"' different ways to achieve

equality here, namely choose exactly one out of each pair ( v, -v). If \VP\ = 2k~1 for

all F g a3, then F^is called an antipodally signed partial Steiner-system.

Theorem 1.5. Suppose V g y(n, k,{±!},[-(/ - 1), t - 1]). Then

\V\^±J2-\k-t+l),

moreover, for k — t + 1, equality is possible if and only ifV= V^ for some (n, k, k — 1)

Steiner-system f.

2. General reductions. For a vector v = (vl, v2,... ,v") let us define the support

S(v)= {/': r/#0,1 <»'< «}•

Lemma 2.1. For awy se/ o/ vectors V with \S(v)\ = & /or all v G F í«ere exwís a

partition Xx U X, U • • • U XA = {1,2,...,«} swc« that the set V = {v G F: |,S(i>)

n X\ = 1, / = !,...,£} sató/ies|F'| s* (Jt!/jfc*)|F|.

Proof. Let Xx U ■ • • U Xk be a random equipartition of {1,2,...,«}. Thus |X,|

= [n/k\ or \n/k]. For a given d e K the probability of \S(v) n X,-| = 1 for

i = 1,... ,k is given by |Xj| • • • |XJ/(JJ) > A:!//:*. Consequently, the expected num-

ber of members of V is at least (k\/kk)\V\ and the statement follows.   D

Note that k\/kk > e'k, thus by considering V, we only lose a constant factor.

The family V is called a transversal family of vectors.

Lemma 2.2. To any transversal family V g i^(n, k, M, L) there exists V" g

r(n, k, M+U AT, L+)satisfying\V"\ > 2-*|F'|.

Proof. Associate with each v g V a ( + l)-vector of length A by defining the z'th

entry +1 if and only if the coordinate of v in S(v) n X, is positive. There are 2k

different (±l)-vectors of length k. Thus we may choose one, say (e,, e2,...,ek),

which has been associated with at least 2~k\V'\ vectors. Let V* be this collection and

let V" be the collection which we obtain from V* by applying the orthogonal

transformation of multiplying the /th coordinate of v G V* by e,, V" g

*"(n,k,M+U M-,L+) follows.    D

Note that Lemmas 2.1 and 2.2 imply

Corollary 2.3.

m(n, k, m, L) < (2e)km(n, k, M+U AT, L + ).

Corollary 2.4.

m(n,k, L) < m(n, k,{±\), L) < (2e)km(n, k, L + ).

For a set of vectors Fwe define f(F) = {5(f): v g F}.
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Proposition 2.5.

(2.1) \V\*i\Ç(V)\m(k,k,M,L).    D

Suppose F is a transversal family of vectors (for the partition X, U ■ ■ ■ U Xk).

Then Ç(V) is a family of transversals. For a subset f/c^u • • • U Xk.we define

the projection ir{H) of H by ir(H) =* {/: H:r\ X,,*. 0 }.

Recall that a sunflower of size i and with center C is a collection Fl,...,Fl of sets

with F nf,»C for 1 < i < j < t.

A family of subsets & is called a wee? semilattice if L, L' g jSP imply L n L' g jS?.

Also^(5,f)= {SnS':S'Gf}-

Lemma 2.6 (Füredi [Fü]). G/uen A, r, i/We ex/sis a positive constant c = c(k, t)

such that any transversal family f of k-subsets contains a subfamily f * satisfying:

(x)\Í*\>c(k,t)U
(ii) e/je/y C g ./(S, f*) w ;«e center of a sunflower of size t (S G f *),

(iii)^(S', f *) i's a meet semilattice.

(iv) the family ir(J(S, f *)) = {77(C): C G ̂ (S, f *)} « independent of the choice

of S g f*.

For f = f(K) let us apply Lemma 2.6 with í = 2 and set JQ = -n(J(S, £*)).

A set G c {1,2,...,A:} is called a generator set of ./0 if G c j¡f g ./0 implies

Jf= {l,2,...,k}.

Proposition 2.7. Suppose^ has a generator set G of size r. Then |f *| < (").

Proof. For each S g f * choose G(S) c 5 so that ir(G(S)) = G holds. Now

5' g £♦, G(S) c 5' imply G(5) çSnS'e ./(S, f*). Thus 5' = S follows. Con-

sequently, the G(S) are all distinct r-subsets of X, U • • • U Xk. This yields |f *| < (").

D

Recall that a c/ia/'/i of length r is a family >40, 4i,... ,^4r with A0 (z A1 cz ■ ■ ■  c _dr.

Proposition 2.8. Suppose J0 contains no chain of length r + 1. 77¡e« ,/0 «as a

generator set of size at most r.

Proof. Apply induction on r. If r = 1 then J§ contains at most one proper subset

38 oi {1,2,..., A:}. Thus {/'} is a generator for all 1 < i^¡k,i ß SS.

Suppose SS c {1,2,... ,k}, 38 is a maximal element in ./0. Define ./ = {38 C\ 3S0:

3S0 e/0}. Then ./has no chain of length r. Consequently, it has a generator set H of

size at most r — 1. Now G = HU {/'} is a generator for ./0 whenever z'g

({1,2,. ..,k}-H).    D

3. The proof of Theorem 1.1. In view of Corollary 2.3 and Lemma 2.1 we may

assume V g f"(n, k, M+U M~, L+), Fis a transversal family of vectors. By omit-

ting at most n vectors we may suppose no v g F has a coordinate position t>(,) with

o(i) > Il     .y•sup •

Let us set y = m2n(/2kJlsup. With v g V, having positive coordinate a, in X¡ we

associate a sequence of integers (r,,...,rt) where t¡ = \a¡/y].
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This defines a partition of V into at most Jfj^/y parts. This constant factor

can be incorporated into c(k,l , winf), thus we may suppose: the same sequence

(tl,... ,tk)is associated with each v g V.

In view of (2.1) and Lemma 2.6, it will be sufficient to show that JQ—associated

with f *(V)—contains no chain of length r + 1.

Fix v g Fwith S = S(v) g f *(V).

Suppose for contradiction, A0 c Ax c ■ • ■ c Ar c ArJ[, = {1,2,... ,/c} is a chain

in Jq. Let i0 c fij c • • ■ c Br+l be the corresponding chain in J(S, I*(F)). Then

for ; = 0,1,...,/- there exists u, g V with s(v¡) C\ S = B¡. By Dirichlet's principle

there are two vectors, say v¡, v¡, i < j, such that (v, v¡) and (v, Vj) are. in the same

interval of length less than m fnf/2.

Taking into consideration \ßy — ß^\ < y and (v, v¡) — (v, v¡) < m2ni/2, we infer

1
2"'inf "  l"i "ji-mh > (v, Vj)-(o, v,) =   £ a,(# - A) +     E    «A'

; B, - B,

-ykÍLv + ™2nS > „ml'sup  ^ '"inf «*   2      inf-

A contradiction.    □

4. The proof of Proposition 1.2. In view of Corollary 2.3, it is sufficient to consider

the case L = L+, and show m(k, k, M, L) < (|L|^Ar). However this is a special case

of Theorem 1.4.    D

5. Exterior products and covering points by hyperplanes. Denote by P" the real

projective space of dimension «. A hyperplane is a subspace of dimension « - 1.

Theorem 5.1. Suppose T c P", T = {x,,... ,xm}, s a positive integer and for every

point x, there exist s hyperplanes H¡'\... ,Hy] so that {x,, x, + 1,... ,xm} D (H^ U

• • • U #i") = {xi+l,...,xm}. Then\T\ < ("^).

Proof. Let w be a polarity of P". Then 77(F) = {77(x,): 1 < / < m} is a collection

of hyperplanes satisfying the following:

(i) For 1 < i < m there exist s points (tr(H{i)),.. .,ir(Ä,(,))), none of which is on

77(x,) so that 77(xy) contains at least one of them iorj > i.

If we replace in (i) the condition y > i by i #y then the upper bound \T\ = \tr(T)\

< ("/*) is just Theorem 4.8 in [Lo]. A slight modification of Lovász's argument

shows that the ¿-element sets {{77(i//0),... ,ir(H$n)} : 1 < ' < rn} which are points

in the sth symmetric power of P", are independent for 1 < 1< m. Consequently,

their number m does not exceed the dimension ("**)■    □

Next we derive Theorem 1.4.

Arrange the vectors in V so that |u,| > \v2\ > • • • > \vm\. Then (v¡, v¡) > (v¡, Vj)

holds for î <j < m. Let \f,...,Xp < (o,-, v,) be such that (e„ vj) g {>^;'...,X</>}

holds for all i <j < m. Let us define

G<"= {ie«":^,!))»^},       l<r«s.
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Then G,(,) is a hyperplane in R". Define //,(,) as the unique hyperplane in F"

containing G,(,).

Then {v1,...,vn} and the hyperplanes ///'' fulfill the assumptions of Theorem 5.1.

Consequently, \V\ = m < ("+*).    D

As pointed out by the referee, Theorem 1.4 can be deduced also using the

approach of Koornwinder [Ko].

6. Signed Steiner systems. For a set of vectors V = {u,,.. .,fjm} define -V—

{-»x,..., -vm).

Proposition 6.1. If L+= L~ then the following two conditions are equivalent:

(i)Ke^»,fc,{±l}, L),

(ii) FU (-F)G r(n,k, { + 1}, LU {-A:}).    D

Corollary 6.2. If-k£L,L + =L~ then

2m(n, k, {±1}, L) = m(n, k, {±1}, L U {-k})

holds.    O

In view of Proposition 6.1 and Corollary 6.2, Theorem 1.5 will follow once we

proved the next theorem.

Theorem  6.3.  Suppose   V g -¡T(«, k, { ±1}, {0, ±1,..., ±(t - 1)} U {-A}).

Then

I")
(6.1) \V\^jj{2'(k-t + l).

I k\

Moreover, for k = t + 1 equality is possible if and only if there is an («, k, t)

Steiner-system f so that V consists of all (0, ± \)-vectors v with S(v) G f.

Proof of Theorem 6.3. There are 2'(") (0, ±l)-vectors with / nonzero coordi-

nates. For such a vector w and v g ^define w < v if (w, v) = t (or equivalently if

v — w is a (0, ±l)-vector with k — t nonzero entries). Define Vw = [v - w: w < v G

F}. Then F„ g -T{n -t,k- t, { ±1}, {-1, -2,...,-2t + 1}).

A theorem of Delsarte, Goethals and Seidel [DGS] yields \VW\ < A - / + 1.

Since for each v g F there are (*) choices of w, w < v, (6.1) follows.

Suppose now equality holds in (6.1), k = t + 1. By our argument, \VW\ = 2 must

hold for all w. Suppose w < v, w < v'. Since (v, v') < A - 2 < t, we infer S(v) =

S(v'), and v and v' have opposite sign in S(v) - S(w). Set S - S(v).

We claim that all (0, ±1)-vectors u with S(u) = S are in V. Indeed, the contrary

implies the existence of two (0, +l)-vectors «,, u2 with S(m,) = S(u2) = S, ux g F,

u2 £ F and m, and w2 differ in only one position (i.e. («,, w2) = A - 2)). Let wx be

the unique (0, + l)-vector with t — k — I nonzero entries satisfying Wj < «,, w1 < w2.

The equality in (6.1), as we have shown above, implies, via |FWi| = 2, that u2 g V, a

contradiction.
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Now consider f = {5(i;): v G F}. By the above we have \V\ = 2k\Ç\, that is

|f | = (^VÍa-i)- Clearly \S n 5"| < A - 2 holds for S, S' g f, thus fis a («, A:, A -
1) Steiner-system and the statement follows.   □

7. Equidistant sets. In the case M = { +1}, L = {/} one can get tight bounds. For

vectors w, v define w < v if w and v coincide in each nonzero coordinate of w.

Theorem [DF2]. Suppose k > I > \, F g r(n, k, { + 1}, {/}) and \V\ >

max{(A - I)2 + (k - I) + 1, (A - /)(/" + 2)}. Then there exists a (0, ±l)-vector w

with I nonzero positions so that w < v holds for all v g V {and consequently the vectors

{v — w: /; g V) are pairwise orthogonal).

The corresponding theorem for M = {1} was proved in [De].
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