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STATIONARY POINTS OF PLANE FORMS

SUSAN JANE COLLEY

Abstract. We apply formulas for multiple-points of general mappings to enumerate

loci of stationary multiple-points of plane forms. This is accomplished by studying

the normalization map of the plane form.

1. Introduction. A plane form is an /-fold Z in p/+" ruled by an irreducible

one-parameter family of (/ — l)-planes, such that a general point of the /-fold lies in

precisely one plane (or ruling). The purpose of this note is to use, in the manner of

[8], the stationary multiple-point formulas of [2] to give various enumerative for-

mulas for the so-called "stationary points" of Z. Such stationary points are limiting

cases of points of Z at which r distinct generating planes meet to those where some

of the rulings coincide.

Classical work in this subject was done by James [5] and Roth [14]. Previous

results include the enumerations of the number of pinch-points of a ruled surface in

P3 and of the number of triple-points of a classical 3-fold plane form in P4 at which

two of the generating 2-planes coincide. Both of these results have been derived

rigorously using modern techniques (the first in [6, §111 B, pp. 331-332], for

example, and the second in [13, 6.5, p. 92]). The benefit to presenting them here is

that they are subsumed as special cases of a more general theory and, in this way, we

may derive new formulas. In addition, we give some limits on the validity of our

results.

The author would like to thank the referee for several helpful suggestions to

improve the exposition.

2. Set-up. All schemes and varieties are defined over algebraically closed fields

which, for simplicity, we take to be of characteristic zero (the characteristic may in

fact remain arbitrary until §4). The basic structure diagram for plane forms Z may

be given as follows:

X= P(E)—+Y„        „/„x /       „        «/+„

/'

C ^Z=f(X)
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Here C is a smooth, complete, irreducible curve and £ is a locally free sheaf of rank /

on C. In order to apply the multiple-point theory of §3, we must also require the

following: (1) Assume that the plane form Z spans Y. (2) The total space X of the

family, together with the structure maps g and/, corresponds bijectively to a map H:

C -* Gr,_x(Y) of C into the Grassmannian via

x ^X~{g(x) e C~f(g-lg(x)) G Gt,„x(Y)).

That is, the fibres of g are mapped as (/ — l)-planes in Y. We assume that H maps C

birationally onto its image in the Grassmannian, so that a general point of Z lies in

the image of just one member of X. (3) If Z is /-dimensional, then /': X -* Z is

finite. Assume that/' is, in addition, birational.

3. Multiple-point theory (see [7 and 2] for details). Let /: X -* 7 be a proper map

between smooth, irreducible, quasi-projective varieties. Then schemes Xr and maps

fr_x: Xr -* Xr_x may be constructed inductively according to the following diagram

(take/to be separated and r ^ 1):

x+i = nn  - Er+X=p-\A)
i p i

p\
Xr<- Xrxx   Xr        ^     A

fr-\i Q i  Pi

K-t<-       K fr=(dei.)p2p.
fr-\

Here Xr+X = P(/) is the residual scheme of the diagonal A in Xr X x Xr, where / is

the ideal sheaf of defining the diagonal in the fibered product. (We note that we take

X0 = Y, Xx = X, and /„ = /.) The essential feature of Xr is that it parametrizes

ordered /*-tuples of points of X with the same image under/. The "exceptional locus"

Er c Xr parametrizes such /--tuples with the additional requirement that (at least)

two of the r points lie "infinitely near" (i.e., determine a tangent direction along the

fibre). The exceptional loci need not, in general, be divisors in the derived schemes

Xr, although they are schemes of zeros of sections of invertible sheaves.

Given a partition a = (ax,... ,ak) of r such that a, < • • • < ak and £a • = r, we

may consider subschemes Ta c Xr which parametrize /--tuples "of type a" (see [2, 2.2]

for the precise definition of Ta). That is, a point of Ta is an ordered r-tuple of points

of X such that the first ax points are infinitely near each other, the next a2 points are

infinitely near, and so on. By ax "infinitely near" points, we mean a curvilinear

length-^! subscheme of the fibre of / having a single point as geometric support.

Using the residual intersection theorem (see [3, §9.2] or [7, §3]) and several other

results which hold under operational rational equivalence (e.g., [2, 1.10-1.20]), we

may define an intersection class na and derive a formula for it in A'(X).The class na

is supported in the locus Na = fxix ■ ■ ■ /r-i'r-i(Ta), where is: Xs+X -» Xs+1 is the

covering of the map from Xs X x _ Xsio itself which switches coordinates (so that, in

effect,/,/', • • • fr_xir_x picks off the first coordinates of the r-tuples of Ta). Exam-
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pies of such formulas are (let n = cod / = dim Y - dim X and ck = ck(vf) =

[f*c(Y)/c(X)]kiîXand Fare smooth)

(3.1) n(2)=cn + x[X],

«-1

(3.2) «(1.2)=/7*c„ + 1[X] -2cncn + l[X] - I 2"-JCjc2n_j+x[X],

n

(3-3) «(3) = c2+x[X] + £ 2"-JCjc2„_J + 2[X].

7 = 0

n = 1 only,

(3-4) »{lil,2) - (/7*c2 - 2Clc2 - 2c3)(f*U[X] - cx[X])

-{f*f*cxc2 + cxf*fmc2 + 2f*f*c3)[X]

+ (4c12c2 + Ac\ + I2cxc3 + 12c4)[^],

(3.5)      n(22) = (c2f*f)fc2 - Acxc\ - 2c\c3 - 8c2c3 - 10c,c4 - l2c5)[X],

(3-6) n(1.3) = {f*fA + 2f*f*c4 + f*f*cxc3)[X]

-(3c,C2 + cxc3 + 2c2c3 + 4c,c4 + 4c5)[A'].

For a given partition a of r, such classes na may be defined and such formulas for

them are valid when/is (/•; ̂ -generic (see [2, 3.5]). For applications to plane forms,

where the map /is between smooth schemes of dimensions / and / + n, it suffices to

check that the following all have the "correct" (i.e., smallest possible) dimension (or

are empty):

(3.7) dim Xs = l-(s - \)n    forl<s<r,

dim Es = I -(s - \)n - 1    for 1 < s < r,

k

dim Ta=l-(r-\)n-(r-k) = l-(r-\)n- £(fl, - l).
i

Actually, less restrictive hypotheses suffice, but we will demonstrate that the loci

above all have the desired dimensions. We also remark that Ran [10], working in a

similar, though not identical, context, has in effect reduced the necessary hypotheses

to that of requiring only Ta to have correct dimension (or be empty). However, Ran

has not made calculations which result in formulas 3.1-3.6 or equivalent versions

thereof.

4. Validity. The dimension conditions given in (3.7) needed to apply multiple-point

formulas hold for generic projections, as may be seen from Theorem A(i) of [12],

although Roberts' work does not apply to plane forms. That is, if X is a projective

variety, then there is an embedding X -» PN for some N such that if/: X -> P/+"

(0 < n < /) is induced by projection from center L, then, for 1 < s < r, Xs, Es, and

Ta all have the smallest possible dimensions (or are empty) whenever L belongs to a

(dense) open subset of the Grassmannian of (A7 — / — n — l)-planes. The point is
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that   the  loci   under  consideration  here  are  essentially  the  same  as   Roberts'

Hj(tt; qx,.. .,qd) loci, whence the result.

Let us consider Kleiman's approach to demonstrating validity of multiple-point

formulas [8, §3]. His approach leads to an explicitly determined class of plane forms

for which (ordinary) multiple-point formulas hold; we extend the results to the

stationary case. In particular, these techniques are in keeping with Hubert's wishes

"to establish rigorously and with an exact determination of the limits of their

validity those geometrical numbers.. .by means of the enumerative calculus...," as

expressed in his 15 th problem (see [4]).

Lemma 4.1. Let X be a smooth, closed subvariety of dimension I of a projective space

PN such that X is not contained in any hyperplane. Assume f: X -* P/+" is projection

from center L such that (a)S2(f) = 0 and (b) for s = 2,...,r each lengths subscheme

of a fibre of f generates an (s — \)-plane in PA'. If these conditions are satisfied for L

belonging to an open subset of the Grassmannian of(N — l—n — \)-planes, then there

is a smaller open subset such that if L belongs to it then the conditions in (3.7) hold and

hence the formula for na is valid. {Note, S2(f) = {x g Ä^dim x ß| > 2}.)

Proof. We first note that the structure map /: X '-* Y for plane forms has no

^-singularities because, for z g Z,/_1({z}) embeds in {z} X C via (/, g). That the

dimensions of Xs and Es are correct for 1 < s < r follows immediately from (i) and

(ii) of Lemma 3.6 of [8]. That dim Ta = I — (r — 1)« — (r — k) (or is empty) follows

from the proof of (ii), by noting that the open set Sa c Hilb' X which parametrizes

length-r subschemes of X of type a has codimension £(«, - 1) in Hüb'. Ä", the

curvilinear Hilbert scheme (see [9]). From this it follows (see [8] for notation) that

the set d~l(Sa n G~lo(L)) has codimension/- - k in Xrand is dense in Ta.

Proposition 4.2 (see [8, 3.7]). Consider the set-up for plane forms. Suppose f:

X —> p/+" factors as an embedding into some PN followed by a central projection and,

in addition, for s = 2,...,r, each lengths subscheme of X generates an (s — \)-plane of

PN whenever g restricted to the subscheme is an embedding. Then the formula for na is

valid and deg na is p(a) times the degree of the locus Na, which is qx ■ p(a) times the

degree of the closure of the set of points of Z at which r branches meet, but the rulings

coincide according to the partition a of r. (See [2, §3] for definitions of qx andp(a).)

Characteristic zero is needed in Proposition 4.2 for the simple description given

for deg/îa, but it is not needed for the validity of the formula for the class na.

Kleiman specifies a class of plane forms [8, 3.8] for which, as will be evident in the

sequel, the formula for na is valid and has the desired meaning.

Kleiman's Class. Assume that C has a fixed embedding in some projective space

P(VX). Assume E is such that £(-1) is generated by global sections and fix V2, a

space of generating sections. Let Kbe a general (I + n + l)-dimensional subspace of

Vx ® V2. We have then that/factors as

X ^ P(VX) X P(V2) ^P(VX®V2) = PN ^Y= P(V)
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where the last map is central projection. It follows that the map H: C —> Gr^^Y")

defined in §2 is an embedding.

As an easy consequence of Proposition 4.2, we have

Theorem 4.3. Assume that the plane form set-up is as given by Kleiman's class. If X

is r-twisted in PN (meaning any length-r subscheme of C spans an (r — Y)-plane in

P( Vx )), then the conclusions of Proposition 4.2 hold.

5. Computations. Having established the validity and meaningfulness of our

multiple-point formulas, we may apply the results to plane forms in the class

specified in §4. First we state some results for the intersection theory of the set-up of

§2 and then apply these to several examples.

Define the following classes onA{X):

h=f*cx(GY(l)) = cl(&x(\)),        e = g*cx(E),        t = g*cx(C).

These classes satisfy the following relations:

(5.1) e2 = t2 = et = 0,       eh'-1=hl.

We also have the following results:

Lemma 5.2 [8, 2.4(h)]. Let abe a q-cycle on X. Then

f*f*a = \j^a-h*\h'+"-«.

Alternatively, if ß is a codimension-k cycle, we have

f*f*ß=(j ß-h'-Ah

Lemma 5.3 [8, 2.4(i)]. (a) fxh' = Jxeh'-1 = d= degree of Z in Y = P,+".

(b) Jxth'~l = 2 — 2p, wherep = genus of C.

Proposition 5.4 [8, 2.3.2]. The total Chern class of the virtual normal bundle vf of f

is given by

f*c(Y)

«''>-^-1 + ,?,
T*-:-+îK-\" h-1.

For ease of reference, the formula for c(«y) when n = 1 (the classical case of a

primal) is

cx(vf) = 2h - t + e,        c2(vf) = h2 - 2th + eh,

c3(Vf)=-th2,       cJ(vf) = 0,   j>4.

Example 5.5. Let Z be a ruled surface in P\ so / = 2, n = 1. Then

n,-» = c [X] = h2 - 2th + eh.'(2)

Thus, by (5.1) and Lemma 5.3, jxn(2) = 2(d + 2p — 2) = #pinch-points of Z =

2#pinch-points if char/t = 2 (see [11, §5, pp. 161-163]). Note that this result is also

derived in [6, III, 23, p. 332] and [1, p. 166].
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Example 5.6. Let Z be a "classical" plane form in P4, so that / = 3, n = 1. Then

the degree of n(2) is the degree of the curve of pinch-points which is given by the

formula in Example 5.5. We also have

"(i,2) = (/*vV2 - 2c,c2 - 2c3)[X] = (2d + Ap- 8)/i3 + 12th2 - 6eh2.

Then, by Lemma 5.3 and Theorem 4.3 we conclude that Sxn(\,i) = 2d2 — \Ad +

Apd — 24p + 24 = # stationary triple-points of Z at which three branches meet, but

two of the generating planes coincide. This is Roth's result [14, formula 12, p. 122]

and was rederived in [13, p. 93] using essentially the same formula as in (3.2), though

this general result was calculated using a different point of view.

Example 5.7. Let Z be a primal contained in P5, so that / = 4, n = 1. From (3.3)

with n = 1, we have

"(3)= (C2 + 2c4 + cxc2)[X].

Thus w(3) = h4 - 6//i3 + 2e/i3, so that Jxn(3) = 3d + 2p - 12 = #"super pinch-

points" (i.e., triple points at which all three of the rulings coincide). Similarly, using

(3.5), we find

"(i,i,2) = (2¿2 - 22¿ + Apd - 32p - 60)h4

+ (\Ad+ Ap - 120)i/;3 +(-Sd- Ap + 6tí)eh\

Hence,

T í "a i 2> - didl - l5d + 2Pd - ™P - 60) + (2 - 2p)(7d + 2p - 60)
I Jx

= # stationary quadruple-points.

Example 5.8. Let Z5 c P6. Then

"(2,2)= (2¿+ Ap - 12)/i5 +(-Ad- Sp + 60)th4 +(2d+ Ap - 2A)eh\

so

\ j "(2,2) = d(2d + Ap- 18) + (2 - 2p)(-2d - Ap +

= #quadruple-points of type (2,2).

Similarly,

"(1,3) = (3d + 2p - 18)/i5 + 45¡7i4 - I5eh4,

so

/ n(U3)= 3((d - 5)(d - 6) + 2p(2d - 15))
J x

= # quadruple-points of type (1,3).
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