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ON G-SYSTEMS AND G-GRADED RINGS

P. GRZESZCZUK

Abstract. Rings graded by finite groups and homomorphic images of such rings are

studied. Obtained results concern finiteness conditions and radicals.

Introduction. Our aim in this paper is the study of rings graded by finite groups.

To obtain some results we need information on homomorphic image of a graded

ring (cf. Theorem 5). The proofs of other results work in this more general situation

as well. For these reasons the paper concerns G-systems, defined as follows.

Let G be a finite group with identity e. A ring R is said to be G-system if

R = T.geCRg, where Rg axe such additive subgroups of R that RgRh Q Rgh for all g,

h g G. If for all g,h g G,RgRh = Rgh, R is called [3,4,7] the Clifford system.

Certainly any G-graded ring is a G-system and the class of G-systems is homomor-

phically closed, while G-graded rings do not necessarily have this property. It is easy

to check that every G-system is a homomorphic image of a G-graded ring.

In this paper we prove that a "Clifford type" theorem holds for every G-system R.

Namely, we show that simple Ä-modules (/î-bimodules) are completely reducible

^-modules (/ve-bimodules) and that J(Re) = J(R) n Re, U(Re) ç U(R), where

/(-), t/(-) denote the Jacobson and the Brown-McCoy radical, respectively. Using

this method we obtain, in particular, a quite different proof from those given by M.

Cohen and S. Montgomery [2] and M. Van den Bergh [6] of Bergman's conjecture.

We also prove that the Ä-module M is Noetherian if and only if M is Noetherian as

an /^-module.

1. We start with

Theorem 1. If the G-system R = EgeC/vg has unity 1, then 1 G Re.

Proof. Define for any nonempty subset S of G, Rs = £seS/?s. It is clear that for

all 0 # S, T ç G, RSRT £ RST. We prove by induction on |G\5| that if e g S

then 1 g Rs. If S = G then 1 g Rc = Rs. Assume the result is true for subsets of

cardinality > \S\. Let x g G\S; then |S U [x}\ > \S\ and |jc_1S U {e}\ > \S\.

Hence by induction assumption 1 g Rs + Rx and 1 g Rx-is + Re. That is, there

exist a(S) g Rs and a(x) g Rx so that 1 + a(S) = a(x) and ßix^S) G Rx-is,

ß(e) G Re so that 1 + ß(e) = ß(x'lS). However, (1 + a(5))(l + ß(e)) =

a(x)ß(x~1S) G RXRX-!S ç Rs. Thus, since e G 5, (1 + a(5))(l + ß(e)) = 1 +

y(S), where y(S) g Rs. Hence, for some 8(S) g Rs, 1 + y(S) = 8(S). In particu-

lar, lefij. Thus, since S = {e} satisfies the hypothesis, leüe.
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Remark 1. Obviously the notion of G-system can be extended to infinite G.

However, Theorem 1 does not hold in this case. Namely, let A be the ring of all

rational numbers of the form 2n/(2m + 1), where n, m are integers and let R = A[x]

be the polynomial ring. There is a Z-gradation on R such that R0 = A. The

homomorphism f: R -* Q given by f(w(x)) = w(\) maps R onto the field Q of

rational numbers. Thus Q is a Z-system with unity 1 and 1 £ A = Q0.

As a consequence of Theorem 1 we obtain

Corollary 1. Let R = T.gŒCRgbe a G-system with unity 1. Then

(a) if I is a right (left) ideal of Re, then IR = R(RI = R) if and only ifI = Re,
(b) an element x g Re is right (left) invertible in R if and only if x is right (left)

invertible in Re,

(c)J(R)nRe<zj(Re).

Proof, (a) If / = Re, then by Theorem 1, 1 g / and IR = R. Conversely, let

R = IR = LgeCIRg. Since, for all g, h g G, (IRg)(IRh) = I(RgIR„) ç IRgh, IR

= T.geCIRg is a G-system with unity. By Theorem 1, 1 g IRe ç /, so / = Re.

(b) Let x G Re be right invertible in R. Consider a right ideal / = xRe of Re.

Since IR = R, by (a) we have / = Re. Therefore, xx' = 1 for some x' g Re.

(c) By (b), /(R) O Re is a quasi-regular ideal of R, so J(R) n Re ç J(Re).

Remark 2. Corollary 1(c) holds also for G-systems without unity. Namely, let

R = T.geCRg be any G-systems. Defining on the additive group R = R X Z multi-

plication by (x, m)(y, n) = (xy + nx + my, mn), we obtain a natural extension of

R to a ring with unity. Moreover, the ring R has a structure of G-system R = T.geGRg,

where Re = ReX Z and, for g # e, Rg = Rg X {0}. It is clear that J(R) = /(Ä)

and7(Äe) = /(ÄJ. Thus,/(Ä) fiÄ, = /(Ä) nReçz j(Re) = J(Re).

The following lemma is in fact the crucial step in the proof of a "Clifford type"

theorem for G-systems.

Lemma 1. Let M be a right module over G-system R = Y.g(=cRg and let 0 + Mx ç

M2 ç ••• ç M be a chain of R -submodules of MR such that U^=1M„ is essential in

MR . Then for some m ^ 1, Mm contains a nonzero R-submodule of M.

Proof. Let us observe that using the procedure of Remark 2, we can reduce the

proof to G-systems with unity. Now we shall prove by induction on k = 1,2,... ,\G\

that there exist a subset Hua G and a nonzero element m L g M such that

Io. e G Hk,

2°. \Hk\ = k,

3°.0 *I.heHmkRhQ Ms(k) for somes(k) > 1.

For k = 1 we put //, = {e}, m, any nonzero element of M, and s(l) = 1. Let

\G\> k > I and /rc¿, Hk satisfy l°-3°. Consider an element g G Hk. If mkRg = 0,

then wÄ + 1 = mk, Hk + X = HkU {g} satisfy l°-3°. If mkRg ¥= 0, then by essential-

ity of U"=1Af„, there exists rg g Rg such that 0 * mtr? e M, for some t > 1. Let
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mk + \ = mkrg< Hk + \ = S~lHk u {e} and s(k + 1) = max{s(k), t). Clearly, \Hk + x\

= k + 1 and, since rgRg-ih ç RgRg-ih Q Rh,

çjM, +   £mAçM( + M((t)-Afs{t+1).
»sff»

Applying 3° to k = \G\ we obtain that, for some m ^ 1, Mm contains a nonzero

Ä-submodule of MÄ.

Now we can prove a " Clifford type" theorem for G-systems.

Theorem 2. // M is a simple right R-module, then MR = Mx © ■ ■ • 0 Mk is a

direct sum of k < \G\ simple R¿-modules.

Proof. Let us observe that any nonzero /v^-submodule A' of M is its direct

summand. Indeed, let K be a maximal with respect to N n K = 0 submodule of

MR . Then TV © K is an essential submodule of MR . Since M is a simple Ä-module,

by Lemma 1 we obtain that N © K = M.

Thus every nonzero R f-submodule of M contains a simple R ,,-module. Let H be a

subset of G containing e, of maximal cardinality, such that, for some m g M,

Hh^HmRh =¿ 0 and, for all h g H, mRh = 0 or mRh is a simple /^-module. We

claim that H = G. Indeed, if g g G\H, then mRg ¥= 0. Let mRe be a simple

Äe-submodule of mRg. Then for h g H, iñRg-ih ç mRgRg-ih £ mRh. Thus if

A g g"1// U {e}, then m/?^ = 0 or mRh is a simple /^-module. This contradicts

maximality of H and proves the claim.

Therefore, M is a sum of A: < \G\ simple R^.-modules.

Theorem 2 and Remark 2 imply immediately

Corollary 2. IfR = Y.g<EGRg is a G-system, then

(a) for any right R-module M, J(MR ) ç J(MR),

(b)for any right R-module M, Soc(MR) ç Soc( A/R ).where Soc(-) denotes the socle,

(c)(cf.[2])J(Re) = J(R)nRe.

The graded Jacobson radical JC(R) of a G-graded ring /?= © eG/?gis defined in

[1] as the ideal of R satisfying the following equivalent conditions:

1. JC(R) is the intersection of all maximal graded right ideals of R.

2. JC(R) is the largest graded ideal I of R such that / n Re is a quasi-regular ideal

oîRe.

Theorem 3. (cf. [2, 6]). For every ring R graded by finite group G, JC(R) ç J(R)-

Proof. Obviously, / = RJ(Re)R is a graded ideal of R. By Corollary 2(c),

/ ç 7(/v) and 7(/ve) ç/f1Afç J(R) DRe = J(Re). Thus, I n Re = J(Re), so

/ g JC(R). Consider the ring S = JC(R)/I. Clearly, 5 is a G-graded ring and its

identity component Se = 0. Thus by [1], 5|C| = 0. Therefore, JG(R) is a /-radical

ideal of R and JAR) c J(R).GV     ) -    v     J

We close this section by

Theorem 4. Let M be a right module over G-system R = EgeG/vg. 77ie« MR is

Noetherian if and only if MR is Noetherian.
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Proof. Suppose that there exists Noetherian A-module M which is not Noetherian

as R ^-module. Using Noetherian induction we may assume that, for each nonzero

/v-submodule N, the module (M/N)R is Noetherian.

Let Xx c X2 c • • • <z MR be a strictly ascending chain of R e-submodules and let

Y be an Re-submodule of M maximal with respect to QJ„=xXn) n Y = 0. Now we

have a strictly ascending chain Xx © Y c X2 © Y Ç • • ■ of R e-submodules of M

such that U™=xXn © Y = (U^=1A'„) © Y is essential in MR/ By Lemma 1, for some

m > 1, the module A^ © 7 contains a nonzero, say TV, /v-submodule. Therefore, in

(M/N)R , we have a strictly ascending chain

*m + i © F/* c Xm + 2 © 7/7V c • • •  ç M/N,

a contradiction.

The converse is clear.

Remark 3. Theorem 4 implies that if the ring R is right Noetherian then the ring

Re is right Noetherian. The converse is not true in general. Consider the matrix ring

*-({ Í)-
where k is a field and A an arbitrary infinite-dimensional /t-algebra. Putting

we obtain a C2-gradation on /?. Clearly, /\0 is right Noetherian but R contains a

strictly ascending chain of right ideals of R, e.g.

(°     VAczl°     VAcz
U     0 j* U     0/~

where Vx c K2 c • • • çj ,4 is a chain of /c-subspaces of A.

2. In this section we show that some of the previous results can be applied to

bimodules. Moreover, we obtain a link between both Brown-McCoy radicals and

prime ideals of Re and R. Now, G-systems do not necessarily have a unity element.

Let us observe that the ring 5, = /v°®z/v(/v°isthe opposite ring of R) has a

structure of the G X G-system. For (g, A) g G X G we make S(g h) the additive

subgroup of S generated by rg ® rh, where rg G R°g, rh g Rh. Clearly, an Ä-sub-

bimodule, or an /?e-subbimodule of an Ä-bimodule V, is simply a right submodule

over S1 or S^ e), respectively. Thus, by Theorem 2, we have

Corollary 3. // V is a simple R-bimodule, then R FR = Vx © • • • © Vk is a direct

sum ofk < |G|2 simple Re-bimodules.

Corollary 4. /// is a maximal ideal of the G-system R = HgeCRg, then J n Reis

a finite intersection ofk < |G|2 maximal ideals ofRe.

Proof. Consider the G-system R = R/J. Obviously, R is a simple Ä-bimodule. By

Corollary 3, there exist simple /v^-subbimodules Vx,...,Vk (k < |G|2) such that

RRRe = Vx © • • • © Vk. Thus, for W,-= Vx © • • • ©_^_! © Vi + 1 © • • • © Vk, O

= Ç\k_xWi and W¡ are maximal Re-subbimodules of RRR<,. Therefore, the ideal / is

an intersection of maximal Re-subbimodules Wx,...,Wk of R and Wl. D Re (i =

1,2,...,k) are maximal ideals of Re.
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Let, for a ring R, U(R) denote the Brown-McCoy radical of R, i.e. the intersec-

tion of all ideals I oî R such that R/I is a simple ring with unity.

Theorem 5. For every G-system R = I.g(ECRg, U(Re) ç U(R).

Proof. Let / be a maximal ideal of R such that R = R/I is a simple ring with

unity. Since R is a G-system, by Theorem 1 the ring R = R e/I n R e has unity. By

Corollary 4, there exist maximal ideals Ix,...,Ik of Re such that / n Re = /, n

• ■ • D JA. Obviously, for í = 1,... ,k, Re/I¡ are simple rings with unity, so U(Re) ç

t/(/v).

We now give an example of a C2-graded ring R = R0 ® Rx with U(Re) ¥= U(R)

nRe.

Example. Let V be an infinite-dimensional vector space over a field k and let

V0, Vx be subspaces of k such that dim^ V0 = 1 and F0 © F, = F. Consider the ring

R of all linear transformations of finite rank of V. R is a simple ring without unity,

so U(R) = R. On /\ we define a C2-gradation putting

R0= {feR\f(V0)çz V0,f(Vx)Q Vx),

*i = {f^R\f(V0)Q Vx,f(Vx)çz v0).

Let us observe that R0 is isomorphic to the ring k © R. Hence R0 is not a

¿/-radical ring.

In [5] Passman proved that if R is a prime ring then there exist sets Y, Z such that

the power series-polynomial ring R* = (R((Y)))(Z) is primitive. Clearly, if R =

L„er/?„ is a G-system, then R* = E„er/\* is a G-system, where R* denotes the set

of all power series-polynomials with coefficients in R . Using Passman's method (see

[5, Theorem 3.1]) and Theorem 2 we obtain

Theorem 6 (cf. [2]). If P is a prime ideal of R, then P D Re is a finite intersection

ofk^ \G\ prime ideals of Re.

As an immediate consequence of Theorem 6 we have

Corollary 5 (cf. [2]). B(Re) = B(R) n Re, where B(-) denotes prime radical.
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