A REMARK ON THE STRUCTURE OF ABSOLUTE GALOIS GROUPS

TILMANN WÜRFEL

ABSTRACT. Let the field F contain all p-power roots of unity for some prime p and suppose that the absolute Galois group G of F is a one-relator pro-p group. We use Merkurjev-Suslin's theorem on the power norm residue symbol to show that G is an extension of a Demushkin group by a free pro-p group.

Let F be a field, F_s its separable closure, and $G = \operatorname{Gal}(F_s/F)$ its absolute Galois group. Let n be an integer not divisible by $\operatorname{char}(F)$ and denote by μ_n the G-module of nth roots of unity. Merkurjev and Suslin [1] have shown that the power norm residue symbol $K_2(F)/nK_2(F) \to H^2(G, \mu_n^{\otimes^2})$ is an isomorphism. It is a natural question to ask what bearing this theorem has on the structure of G. The present note is based on the fact that the symbol above factors through the homomorphism $H^1(G, \mu_n)^{\otimes^2} \to H^2(G, \mu_n^{\otimes^2})$, induced by the cup product, which hence is surjective. To be modest, we specialize to Sylow subgroups of G, i.e., we let G itself be a pro-G group. Using well-known properties of such groups we then derive some information in the case where G has exactly one relation and F contains all G-power roots of unity.

The notation will be standard: subgroups of a pro-p group G are understood to be closed; the Frattini subgroup is $G^* = G^p G_2$, G_2 denoting the commutator subgroup; subgroups generated by commutators are written as [X, Y]; cohomology groups with coefficients being $\mathbb{Z}/(p)$ are denoted by $H^i(G)$.

THEOREM. Let F be a field with separable closure F_s and absolute Galois group $G = Gal(F_s/F)$. Suppose that G is a finitely generated one-relator pro-p group where the prime p is unequal to char(F) and F contains all p-power roots of unity.

Then there is a normal subgroup N of G which is pro-p free such that G/N is a Demushkin group and the inflation map $H^2(S/N, \mathbb{Z}/(p^n)) \to H^2(S, \mathbb{Z}/(p^n))$ is an isomorphism for every subgroup S of G containing N, and for all integers n.

PROOF. (1) We begin by constructing a normal subgroup N of G such that, setting $\overline{G} = G/N$, the inflation map $H^2(\overline{G}) \to H^2(G)$ is an isomorphism and the cup product

$$H^1(\overline{G}) \times H^1(\overline{G}) \to H^2(\overline{G})$$

is nondegenerate.

Received by the editors December 6, 1984. 1980 Mathematics Subject Classification. Primary 12G05. Let X be the subgroup of G containing G^* such that $H^1(G/X)$ is the radical of the cup product map $H^1(G) \times H^1(G) \stackrel{\cup}{\to} H^2(G)$. Choose a second subgroup Y of G containing G^* so that $G/G^* = X/G^* \times Y/G^*$. Compactness of G then yields a subgroup G of G which is minimal with respect to G denoted by G. This implies that $G \cap G^* = G$ denoted by G denoted by G

$$H^{1}(\overline{G}) \times H^{1}(\overline{G}) \stackrel{\cup}{\to} H^{2}(G)$$

$$\stackrel{\cup}{\to} \nearrow$$

$$H^{2}(\overline{G})$$

(2) We have not yet made use of the hypothesis dim $H^2(G) = 1$. This, together with the result of (1) makes \overline{G} a Demushkin group (cf. [2, no. 3]). In particular, \overline{G} has cohomological dimension 2 [2, no. 9]; the exceptional case $\overline{G} = \mathbb{Z}/(2)$ being ruled out by what follows. In fact, the abelianized group \overline{G}_{ab} is torsion free. This can be seen as follows: G_{ab} is torsion free because F contains all p-power roots of unity. Applying cohomology to $0 \to \mathbb{Z}/(p) \to P \to P \to 0$ where $P = \mathbb{Q}_p/\mathbb{Z}_p$, and the isomorphism of (1) yield the following commutative diagram with exact rows.

$$H^{1}(\overline{G}, P) \xrightarrow{p} H^{1}(\overline{G}, P) \rightarrow H^{2}(\overline{G})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \wr$$

$$H^{1}(G, P) \xrightarrow{p} H^{1}(G, P) \xrightarrow{0} H^{2}(G)$$

Thus, $H^1(\overline{G}, P)$ is divisible as well and \overline{G}_{ab} is torsion free.

We shall also need the fact that the inflation maps $H^2(\overline{G}, R_n) \to H^2(G, R_n)$ are isomorphisms for all $R_n = \mathbb{Z}/(p^n)$. This follows by induction from the cohomology sequences for $0 \to R_1 \to R_{n+1} \to R_n \to 0$, using $\operatorname{cd}(\overline{G}) = 2$ and torsion freeness of G_{ab} .

(3) The rest of the theorem is proved by considering the Brauer groups involved. We want to show that N is pro-p free and that the \overline{G} -module $A = \overline{F}^{\times}/\mu$, where $\overline{F} = F_s^N$ and μ is the group of all p-power roots of unity, satisfies $H^k(\overline{G}, A) = 0$ for k = 1, 2. We have the following commutative diagram whose upper row is exact as well as its left column which derives from $1 \to \mu \xrightarrow{j} \overline{F}^{\times} \to A \to 1$, taking into

account Hilbert's Theorem 90 and $cd(\overline{G}) = 2$:

$$\begin{array}{cccc}
0 \\
\uparrow \\
H^{2}(\overline{G}, A) \\
\uparrow \\
0 \rightarrow & H^{2}(\overline{G}, \overline{F}^{\times}) \xrightarrow{\inf} H^{2}(G, F_{s}^{\times}) & \rightarrow & H^{2}(N, F_{s}^{\times})^{G} \xrightarrow{ig} H^{3}(\overline{G}, \overline{F}^{\times}) \\
\uparrow j_{*} & \uparrow \uparrow & \uparrow \uparrow \uparrow \\
H^{2}(\overline{G}, \mu) \xrightarrow{i} H^{2}(G, \mu) & H^{2}(N, \mu)^{G} \rightarrow H^{3}(\overline{G}, \mu) = 0 \\
\uparrow \\
H^{1}(\overline{G}, A) & \uparrow \\
0 & & \uparrow \\
\end{array}$$

The two vertical isomorphisms come from the usual description of Brauer groups using roots of unity. Thus the transgression map tg is zero. By (3), the inflation map i is an isomorphism. Hence so are inf and j_* . It follows that $H^k(\overline{G}, A) = 0$ for k = 1, 2 and that $H^2(N, \mu)^G = 0$. Since G is pro-p and N_{ab} is torsion free, $H^2(N) = 0$ and N is pro-p free.

(4) The last statement of the theorem needs only to be shown for open subgroups S of G. Put $\overline{S} = S/N$. Since S_{ab} and \overline{S}_{ab} are torsion free, it suffices to show that $H^2(\overline{S}, \mu) \simeq H^2(S, \mu)$. Using $H^k(\overline{G}, A) = 0$ for k = 1, 2 and p-torsion freeness of A, the method of the criterion for cohomological triviality [3, p.150, Théorème 6] yields that $H^2(\overline{S}, A) = 0$. We have a diagram analogous to that in (3)

$$H^{2}(\overline{S}, \overline{F}) \to H^{2}(S, F_{s})$$

$$\uparrow j_{*} \qquad \uparrow$$

$$H^{2}(\overline{S}, \mu) \stackrel{i}{\to} H^{2}(S, \mu)$$

where j_* is onto. So it remains to verify that i is injective which in turn needs only to be shown for $H^2(\bar{S}) \stackrel{i'}{\to} H^2(S)$ because \bar{S} and S abelianized are torsion free. We use corestriction to do so. The diagram

$$H^{2}(\overline{S}) \xrightarrow{i'} H^{2}(S)$$

$$\overline{\text{cor}} \downarrow \qquad \downarrow \text{cor}$$

$$H^{2}(\overline{G}) \xrightarrow{\sim} H^{2}(G)$$

commutes because $N \le S \le G$. The corestriction map $\overline{\text{cor}}$ is onto because $\operatorname{cd}(\overline{G}) = 2$ and hence is an isomorphism because both \overline{G} and \overline{S} are one-relator groups [2, no. 9].

Let us close with a question. The cohomological condition given in the theorem is somewhat obscure. Does it imply that G is of the form $G_0 \coprod \overline{G}$, the free pro-p product of a free pro-p group G_0 and a Demushkin group \overline{G} ?

REFERENCES

- 1. A. S. Merkur'ev and A. A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR-Izv. 21 (1983), 307-340.
 - 2. J-P. Serre, Structure de certains pro-p groupes, Séminaire Bourbaki 1962/63, exposé no. 252.
 - 3. _____, Corps locaux, Hermann, Paris, 1968.

Pennsylvania State University, Wilkes-Barre Campus, Lehman, Pennsylvania 18627