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POSITIVE DEFINITE BOUNDED MATRICES AND

A CHARACTERIZATION OF AMENABLE GROUPS1

MAREK BOZEJKO

Abstract. We show that a discrete group  G is amenable iff the Herz-Schur

multiplier algebra B2(G) coincides with the Fourier-Stieltjes algebra B(G).

1. Introduction and notation. Let A' be a set. A bounded function a: X X X -» C is

called positive definite if, for any a, g C and any finite F c X,

i,je F

We denote by p( X) the set of all positive definite bounded functions onlxl

It was  shown by Schur that if a, b g p(X),  then the Hadamard product
def

a ■ b g p(X) ((a ■ b)(i, j) = a(i, j)b(i, j), i,j G X).

From that result follows that the setáC(l2(X)) of all bounded operators on l2(X)

forms a Banach algebra under the Hadamard product.

Let V2(X) denote the algebra of all multipliers of the Banach algebra i?(/2(Ar))

under the pointwise multiplication, i.e.

V2(X)= {a:a-ä>(l2(X))cz2>(l2(X))}.

If S and T are two spaces of functions on some set X, let M(S, T) denote the

space of all multipliers from S into T, i.e. the space of the functions k on X such that

k ■ f g T for every/ g S. For M(S, S) we write M(S).

A. Grothendieck [8] observed that

V2(X) = M(c0(X)èc0(X)).

J. E. Gilbert [6] and G. Bennet [1] showed that V2(X)= {(x(i), y(j)): x(i),

y(j) g Hubert space and |jx(i)|| < C, \\y(j)\\ < Ç).
From the last theorem follows that V2(X) is the linear span of thep(A').

The last space was investigated in an excellent way by M. G. Krein [10].

The Littlewood inequality (essentially its dual form) says that if the matrix a

defines a continuous linear operator from /,(X) to l2(X), then a g V2(X), and

/ A1/2
\\a\\v2 < V^ sup    £ \"(i,j)\

if*\4mx I
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N. Varopoulos [16] considered the set of Littlewood functions

t2(X) = {a, + a2: ax&#(lx, l2(X)),a2 ^ £C(l2, lx(X)))

and he showed that a g t2(X) iff the norm

IWk =      sup       — L|a(/, j)\ : i G Fx,j g F2, \Fx\ =\F2\
Fu infinite I |F,|

is finite.

From now on let X = G be a discrete group and let G act on itself by left

translation. We call a function a on X X X invariant if a(gx, gy) = a(x, y) for any

x,y, g & G, i.e. there exists a function/on G such that f(y'lx) = a(x, y). Let

VN(G)=J?(l2(G))im

be the set of all invariant operators on /2(G)—the von Neumann algebra of the

group G considered by P. Eymard, which is the dual of the Fourier algebra

,4(G) = /2(G)*/2(G).  '

Let B2(G) = V2(G)mv denote the Herz-Schur algebra. For another interesting

characterization of the Herz-Schur algebra B2(G) see the paper [3], where it was

shown that B2(G) = M0A(G), where M0A(G) is the space of all completely bounded

multipliers of the Fourier algebra A(G). For M0A(G) see also the paper [4] of de

Cannière and U. Haagerup.

Let P(G) = p(G)im be the set of all positive definite functions on G, B(G) =

lin P(G).

Let us note that B(G) is the dual of the full C*-algebra C*(G) of the group G.

It was proved by M. G. Krein [10] that if G is an amenable group, then

B(G) = B2(G).

It was shown by C. Herz [9] that, for any locally compact group G,

B(G) c B2(G) c M(A(G)).

For the free group F2, M. Leinert [11] has observed that B(F2) c¿ B2(F2); also in

the paper [2] it was noted that 52(F2) r¿ M(^(F2)).

C. Nebbia [13] proved that a discrete group G is amenable iff 5(G) = M(A(G)).

V. Losert [18] extended that result to all I.e. groups.

The aim of this note is to replace Nebbia's result by the following stronger

statement:

B(G) = B2 ( G )    iff the group G is amenable.

Let us now recall that the Banach space W is called of cotype 2 if there exists a

constant C > 0 such that, for any xx, x2,... ,xn g W and any n = 1, 2, 3,..., we

have

£
L rk(t)x,

k = l

1/2

dt>c\ I UV2
k-l

where rn are the Rademacher functions on [0,1]. It is well known that L ''-spaces

(1 < p < 2) are of cotype 2.
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2. The Theorem.

Theorem. For a discrete group G the following conditions are equivalent:

(i) G is an amenable group.

(ii) B2(G) = B(G).
(iii) B2(G) is of cotype 2.

Proof, (i) -» (ii) was given by M. G. Krein [10]; (ii) -» (iii) follows from the N.

Tomczak-Jaegermann [15] theorem that the dual of a C*-algebra is of cotype 2. (See

also G. Pisier [14] for a simple proof of that fact.) We show now that (iii) -» (i).

First we show that M(lx(G), B2(G)) c /2(G). Let g g M(lx(G), B2(G)) and let

g = £"_ian8x , then for each t G [0,1] the function
oo

g,=  ¿Z«r,r„(t)Sxe B2(G)    and    ||g,||fli ^ ||g||w(/„,fl2).
n = l

Since by assumption B2(G) has cotype 2 we get

\\g\\M(l„.B2)>   I

Hence g G /2(G).

Now let us observe that the set of all Littlewood functions

T2(G) = tr(G) c M(IJG), B2(G)),

therefore 7"2(G) c l2(G). On the other hand, we always have /2(G) c T2(G), so

T2(G) - /2(G).

Let us note (see also J. Wysoczahski's general result [17]) that from the Varopou-

los characterization of the Littlewood functions we have, for/ G T2(G),

ll/llr-    suP   {-¿-(\f\\xFl*xFl)) <||i/i2IL(C)-

Since T2(G) = l2(G) we get

l!/lllí(C)< CíHl/llUc)    forevery/G T2(G).
This implies that for any positive function g g /,(G) we have

llglk<G)<  C||g||^(C).
Hence by the Kesten-Hulanicki characterization of amenable groups we obtain that

G is amenable.
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