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THE POTENTIAL J-RELATION AND
AMALGAMATION BASES FOR FINITE SEMIGROUPS

T. E. HALL AND MOHAN S. PUTCHA

ABSTRACT. Let S be a finite semigroup, a, b G S. When does there exist a

finite semigroup T containing S such that a J b in T? This problem was posed

to the second named author by John Rhodes in 1974. We show here that if a,

6 are regular, then such a semigroup T exists if and only if either a Jb in S,

or a ^ SbS and 6 ^ SaS. We use this result to show that analgamation bases

for the class of finite semigroups have linearly ordered J-classes.

1. Preliminaries. For X any set, \X\ denotes the cardinality of X and T(X)

denotes the full transformation semigroup on X, acting on the right on X. If

a G T(X), then p(a) denotes the rank of a, namely \Xa\. Let F be a field. Then

we let Mn(F) denote the multiplicative monoid of all n x n matrices over F. If

a G Mn(F), then p(a) denotes the rank of a. Let X be a set, with \X\ — n. Then

T(X) acts naturally on a vector space of dimension n over F. Thus T(X) embeds

naturally into Mn(F). Moreover, this embedding preserves rank.

Let S be a semigroup. If a, 6 € S, then we write a\b (a divides b) if 6 G S1aS1,

i.e., ii Jb<Ja-
By an amalgam we mean a list (S, T; U) of semigroups such that S fl T = U,

and we say the amalgam is embeddable if there is a semigroup W with S and T as

subsemigroups (see [5] for more details). By an amalgamation base for a class C of

semigroups we mean any U G C such that every amalgam (S,T;U) with S,T G C

is embeddable in some W G C (see [4] for some examples).

2. The potential J-relation.

THEOREM 1.   Let S be a finite semigroup, ACS.

(a) If for any a,b G A, either aJb or a^b, b\a, then there exists a finite semigroup

T containing S such that A lies in a J-class of T. If S is an inverse semigroup,

then T can be chosen to be an inverse semigroup.

(b) Conversely, if S can be embedded in a finite semigroup T containing A within

a J-class and if every element of A is regular in S, then for any a,b G A, either

a Jb in S or a\b, b\a in S.

PROOF, (a) Without loss of generality we can assume that S = S1 and that A

contains no pair of J-equivalent elements. We shall embed S in a transformation

semigroup T(X) such that the elements of A all have the same rank, i.e., are

J-related.

Choose a G A such that \Sa\ is the maximum.  Let A = {a = eto,ai,... ,Op}.

Let Ij = \Jk¥:j SakS, j = 1,... ,p. Let So = 5, Sj = S/Ij, j = 1,... ,p. Then 5
acts on the right onS,,i = 0,...,p. Let |5o,| = m¿, i = 0,... ,p, ß3■ = |SyOj.| > 1,
-
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j = 1,... ,p, oto - rij=i(Ä - !) and aj = ao(m0 - mj)/(ßj - 1), j = 1,... ,p.
So oto > 1) OLj > 0, j = 1,... ,p. Let X denote the disjoint union of q¿ copies of

Si, i — 0,..., p. Then 5 acts faithfully on the right on X and thus S embeds in

T(X). Clearly |Xa0| = a0m0 + Y73 = i aii an(* \Xa0\ = a0mj + ctjßj + Ylk¿o,j Qfc>

j — 1,... ,p. Routine calculations now show that \Xar>\ = \Xaj\, j — 1,... ,p. So

A lies within a J-class of T(X).

If S is an inverse semigroup, then we can use the Preston-Vagner representation

of 5 and the Sj's to obtain a representation of S in the symmetric inverse semigroup

onl.

(b) Suppose that S can be so embedded in T and suppose, to the contrary, that

there exist a, b G A such that a\b and b\a. By [2, Theorem 1 or 7, Proposition 3.1]

there exist idempotents e G Ja, f G Jb such that e > /. Clearly e J f in T, so T

contains a copy of the bicyclic semigroup [1, Theorem 2.54] and hence is infinite, a

contradiction.

The next theorem shows that with respect to semigroup division, the whole

semigroup can be put into a J-class.

THEOREM 2. Let S be a finite semigroup. Then there exists a finite regular

semigroup T, a subsemigroup Tq of T, a J-class J of T and a morphism <f>: T§ —> S

such that <p(J n To) = S. If S is a regular semigroup, then Tq can be chosen to be

a regular semigroup. If S is an inverse semigroup, then Tr¡ and T can be chosen to

be inverse semigroups.

PROOF. Let TQ = S x {0,1} with the following multiplication:

(a, a)(b,ß) = (06,7),

where ,    T  ,
_ / 1    if a = /? = 1 and aJbJab,

10    otherwise.
It can be verified that To is a semigroup. If S is a regular semigroup, then To is a

regular semigroup. If S is an inverse semigroup, then To is an inverse semigroup.

The map a >—► (a, 0) embeds S into To.

Easy manipulation (or Remark 1 below) now shows that the subset A = S x {1}

satisfies the hypothesis of Theorem 1(a). Thus there exists a finite semigroup T

containing To such that A lies in a J-class J of T. the map <¡>: Tq —> S given by

<¡>(a, a) = a is a morphism and <j>(J n T0) 2 4>(A) — S. This proves the theorem.

REMARK 1. In fact S x {0} is an ideal of T0 and T0/(S x {0}) is isomorphic to

the 0-direct union [1, §6.3] of all the principal factors {Ju{0} : J G S/J} (including,

if 5 = 5°, the two element semilattice), while To is the ideal extension of S x {0} (or

S) by T0/(5 x {0}) determined by the partial morphism (s, 1) t-> (s,0) for s G S.

3. Amalgamation bases.

THEOREM 3. For any amalgamation base of the class of finite [finite regular,

finite inverse] semigroups, the J-classes are linearly ordered.

PROOF. Take any amalgamation base, U say, of the class of finite semigroups,

and suppose, to the contrary, that there are two elements, o and b say, whose

J-classes are not comparable.

Case I. a or b is regular, say a. Take any idempotent e G Ja- Form a semigroup

U' = U U {e1} containing U as a subsemigroup (where e1 <£ U) by defining e'2 =
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e', e'u = eu, ue' = ue, for ail u G U. Then e'f b and b \ e' in U', so by Theorem 1

there exists a finite semigroup S containing U' such that c' Jb in 5.

Since Je = Ja and Jb are not comparable, again by Theorem 1, there exists a

finite semigroup T containing U such that e J 6 in T.

The amalgam (S, T; U) is embeddable in a finite semigroup, W say, since U

is an amalgamation base for the class of finite semigroups. But then in W we

have eJbJe1 and e < é, whence W contains a copy of the bicyclic semigroup [1,

Theorem 2.54] and is infinite, a contradiction.

The proof so far is easily modified to give a proof of the bracketed statements.

Note that the result for the class of finite regular semigroups is a trivial corollary

of the result for the class of finite semigroups, since a regular semigroup is an

amalgamation base for either class if and only if it is one for the other class (since

any finite semigroup embeds in a finite regular semigroup).

Case II. a and b are not regular. Without loss of generality we can assume that

U is a subsemigroup of Mn(Z2) for some positive integer n, and that n > p(a) >

p(b). Consider the embedding 6: Mn(Z2) -> M2n(Z2) given by 0(c) = (CQ°). Put

a' = (° ¿), where 1 denotes the n x n identity matrix; then p(a') = n + p(a) >

2p(a) = p(6(a)) > p(6(b)) and a'2 = 9(a). (This method of finding square roots

is a variation of that due to C. J. Ash [5, Theorem 5.1].) Thus, so far, we have

embedded U in a finite semigroup U' with an element a! such that a'2 = a and

b\a' (note that from b \ a in U we do not get b \ a in U', so it is not immediate

from a'2 = a that b\a! in U').

Now consider the embedding ip: U —> U' x(U/U1aU1) given by i¡)(u) = (u, <p(u)),

where <f> is the canonical morphism of U upon U/^aU1. Put v = (a',0); then

v2 = (a,0) = ip(a) and v \ (b,<j>(b)) = ip(b) since <j>(b) ̂ 0. Also ip(b) \v since b \ a'

in U'. Thus we have a semigroup V containing U and an element v such that

v2 = a,v\b,b\v.

By Theorem 1, there exists a finite semigroup S containing V such that v Jb in

S. Also, since in U, Ja and Jb are not comparable, by Theorem 1 there is a finite

semigroup T containing U such that a Jb in T.

Since U is an amalgamation base for the class of finite semigroups, the amalgam

(S,T;U) is embeddable in a finite semigroup W, say. Then vjbja = v2 in W,

and since W is finite, we have v M v2 = a in W. Thus o is in a subgroup of W and

hence in a subgroup of U, contradicting that a is not regular in U.

REMARK 2. The existence of a finite inverse semigroup which is not an amalga-

mation base for the class of finite inverse semigroups was first shown by C. J. Ash:

his example, given in [3], is the three element semilattice which is not a chain. His

construction and proof led us to the proof in Case I above.

REMARK 3. One of the authors has recently shown that the J-classes being

linearly ordered is also a sufficient condition for a finite inverse semigroup to be an

amalgamation base of the class of finite inverse semigroups.
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