ON SOME PROPERTIES OF THE BANACH ALGEBRAS $A_{p}(G)$ FOR LOCALLY COMPACT GROUPS

Dedicated to my teacher Rafael Artzy with gratitude and respect

EDMOND E. GRANIRER

Abstract

We strengthen and improve theorems of Choquet-Deny and of Foguel concerning convolution equations and iterates of convolution of a measure to all algebras $A_{p}(G)$ and all locally compact groups. Furthermore, we improve results of H. P. Rosenthal on ideals of $A(G)$ to the algebras $A_{p}(G)$ and show that some hold for amenable groups but not for free nonabelian groups. Finally, we improve a (possibly) weak version of a theorem of Gilbert on projections onto some subspaces of $L^{\infty}(G)$ to all locally compact groups.

Introduction. In [13] T. Ramsey and Y. Weit provide new proofs for the following theorem of S. Foguel and of Choquet-Deny concerning iterates of convolutions of a measure on a locally compact abelian group G with dual Γ. ${ }^{1}$

Theorem (Foguel). Let G be an l.c.a. group and $\mu \in M(G)$ be such that $\sup _{n}\left\|\mu^{n}\right\|<\infty$. Then $\lim \left\|\mu^{n} * f\right\|_{1}=0$ for each $f \in I_{e}=\left\{f \in L^{1}(G) ; \hat{f}(e)=0\right\}$ if and only if $|\mu(\gamma)|<1$ for all $\gamma \in \Gamma \sim\{e\}$.

Here μ^{n} is the n-times convolution power of μ and e denotes the unit of Γ.
Theorem (Choquet-Deny). Let G be an l.c.a. group and $\mu \in M(G)$. The following are equivalent:
(i) for $f \in L^{\infty}(G), \mu * f=$ fimplies $f=$ constant.
(ii) $\mu(\gamma) \neq 1$ for $\gamma \in \Gamma \sim\{e\}$.

We strengthen and improve (the dual version of) both results to all locally compact groups and all algebras $A_{p}(G), B_{p}^{M}(G), P M_{p}(G)$ in the first two theorems of the paper and in the remarks after them. (If G is abelian and $p=2$, then $A_{2}(G)=A(G)=L^{1}(\Gamma) \wedge, B_{2}^{M}(G)=B(G)=M(\Gamma)^{\wedge}$ and $P M_{2}(G)=L^{\infty}(\Gamma)$.) Furthermore, we point out that if, for some $\lambda \in \mathbb{C}$ and $u \in B_{p}^{M}, E_{\lambda}=\left\{\phi \in P M_{p}\right.$; $u \cdot \phi=\lambda \phi\}$ is a reflexive Banach space and if G is amenable, then E_{λ} is finite dimensional. This is false if G is discrete and contains the free group on two generators (via existence of Leinert sets in G).

In Theorem 4 we improve a result of H. P. Rosenthal [18, p. 39] to all amenable groups G. We show that, if for some closed ideal $I, A_{p} / I$ is a reflexive Banach space and if G is amenable, then A_{p} / I is finite dimensional. Again, using Leinert sets, we

[^0]get a counterexample in case G is discrete and contains a free group on two generators.

In Theorem 5 we improve the following result of H. P. Rosenthal, which is part of Theorem 2.12 on p. 53 in [18]: If G is any nondiscrete locally compact abelian group, then any nonzero ideal of $A(G)$ contains an isomorphic copy of l^{1}. We show that this result is true for all nondiscrete G and for all algebras $A_{p}(G)$. This is false if G is discrete and $p=2$, as shown by M. A. Picardello [21].

In Theorem 6 we prove a result related to the beautiful main theorem of J. E. Gilbert on existence of projections onto w^{*} closed translation invariant subspaces of $L^{\infty}(G)$. Again this is done in the framework of the algebras $A_{p}, B_{p}^{M}, P M_{p}$.

The reader not familiar with the algebras A_{p} may find the results that follow of interest even for $p=2$ and abelian G.

Definitions and notation. \mathbb{C} will denote the complex field. G will always denote a locally compact group, $C_{0}(G)\left(C_{00}(G)\right)$ the continuous functions on G, which tend to 0 at ∞ (with compact support). $L^{p}(G), 1 \leqslant p \leqslant \infty$, will be the usual spaces of p-integrable functions with respect to a fixed left Haar measure m and $\|f\|_{p}=$ $\left(\int|f|^{p} d m\right)^{1 / p},\|f\|_{\infty}=\operatorname{ess} \sup |f(x)|$. We follow Herz [8] for notation and properties of the Banach algebras $A_{p}(G)=A_{p}$. One has that $A_{2}(G)=A(G)$ is the Fourier algebra of G à la Eymard [2]. We denote by $\|v\|_{A_{p}}$ the norm in A_{p} (or just $\|v\|$ when the context is clear). We denote by $B_{p}^{M}=B_{p}^{M_{p}}(G)$ the set of bounded complex functions u on G such that $u v \in A_{p}(G)$ for all $v \in A_{p}$. The norm in B_{p}^{M} is given by $\|u\|_{M}=\sup \left\{\|u v\|_{A_{p}} ;\|v\|_{A_{p}}=1\right\}$. If G is abelian with dual Γ, then $A_{2}(G)=A(G)=$ $L^{1}(\Gamma)^{\wedge}$ and $B_{2}^{M}(G)=B(G)=M(\Gamma)^{\wedge}$, where $M(\Gamma)$ is the Banach algebra of bounded complex measures on Γ and ${ }^{\wedge}$ denotes Fourier transform. $P M_{p}(G)$ is the Banach space dual of A_{p} as in [8]. If G is abelian, then $P M_{2}(G)=L^{\infty}(\Gamma)$. We define the module action of B_{p}^{M} on $P M_{p}$ by $\langle u \cdot \phi, v\rangle=\langle\phi, u v\rangle$ for $\phi \in P M_{p}, v \in A_{p}$, $u \in B_{p}^{M}$. If $v \in A_{p}$, then $\operatorname{supp} v$ denotes the closure in G of $\{x ; v(x) \neq 0\}$.

If C is a subset of A_{p}, then \bar{C} will denote the norm closure of C in A_{p}.
Some interesting properties of the algebras $A_{p}(G)$ for abelian G have been obtained by N. Lohoue in C. R. Acad. Sci. Paris Ser. A 273 (1971), 893-896.

If X is a Banach space, then $L(X)$ will denote the bounded linear operators T : $X \rightarrow X$ with $\|T\|=\sup \{\|T x\| ;\|x\|=1\}$. If A, B are subsets of C, then $A \sim B$ will denote the set-theoretical difference of A and B. And if τ is a topology on C, then $\tau \mathrm{cl} A$ will denote the τ-closure of A in C.

The following lemma was obtained independently of the proofs given in [13].
Lemma 1. Let $u \in B_{p}^{M}(G)$ be such that $|u(x)| \leqslant 1$ for all x and, let $L=\{x$; $|u(x)|=1\}$. If $v \in C_{00} \cap A_{p}(G)$ is such that $\{\operatorname{supp} v\} \cap L=\varnothing$, then $\left\|u^{n} v\right\|_{A_{p}} \rightarrow 0$ as $n \rightarrow \infty$. ($L=\varnothing$ is allowed.)

Proof. Let $S=\operatorname{supp} v . S$ is compact and there exists a symmetric neighborhood of e, V such that $S V^{2} \cap L V=\varnothing$ and \bar{V} is compact. For x in G define

$$
g(x)=\lambda(V)^{-1}\left[1_{S V} * 1_{V}\right](x)=\lambda(V)^{-1} \lambda(x V \cap S V)
$$

Then $g \in A_{p}$ by the definition of $A_{p}, g(x)=1$ on $S, g(x)=0$ if x is off $S V^{2}$ and $0 \leqslant g(x) \leqslant 1$ for all x. Furthermore, $u g \in A_{p} \cap C_{00}$. Hence $|u(x) g(x)|<1$ for all x
in G (if $x \in L$ then $g(x)=0$, and if $x \notin L$ then $|u(x)|<1$, while $0 \leqslant g \leqslant 1$). Let $d=\sup \{|u(x) g(x)| ; x \in G\}<1$. The maximal ideal space of $A_{p}(G)$ is $G[8, \mathrm{p}$. 102], hence the spectral radius of $u g$ is $d=\lim _{n}\left\|(u g)^{n}\right\|^{1 / n}<1$. Now choose $\delta>0$ such that $d+\delta<1$. Then for some n_{0} we have $\left\|(u g)^{n}\right\|_{A_{p}}<(d+\delta)^{n}$ if $n \geqslant n_{0}$. Hence $\left\|(u g)^{n}\right\|_{A_{p}} \rightarrow 0$. But $g^{n}(x)=1$ if $x \in S$; thus $g^{n} v=v$. It follows that

$$
\left\|u^{n} v\right\|_{A_{p}}=\left\|u^{n} g^{n} v\right\|_{A_{p}} \leqslant\left\|u^{n} g^{n}\right\|_{A_{p}}\|v\|_{A_{p}} \rightarrow 0 .
$$

Remark 1. Note that no assumption on the boundedness of $\left\|u^{n}\right\|_{M}$ is made in the above lemma. If, however, sup $\left\|u^{n}\right\|=C<\infty$, then $\left|u^{n}(x)\right| \leqslant C$ for all n; thus $|u(x)| \leqslant 1$ for all x.

Let $L \subset G$ be closed. Let $J_{L}=\left\{v \in A_{p} \cap C_{00} ; \operatorname{supp} v \cap L=\varnothing\right\}$ and $I_{L}=\{v \in$ $A_{p} ; v=0$ on $\left.L\right\}$. Clearly $\bar{J}_{L} \subset I_{L}$.

Remark 2. If $u \in B_{p}^{M}$ is such that $\left\|u^{n} v\right\| \rightarrow 0$ for each $v \in J_{L}$ (where $L \subset G$ is any closed set), then $|u(x)|<1$ for each $x \in G \sim L$. Since if $\left|u\left(x_{0}\right)\right|=1, x_{0} \in G \sim L$, then there is some $v \in J_{L}$ such that $v\left(x_{0}\right)=1$. Then $1=\left|u^{n}\left(x_{0}\right) v\left(x_{0}\right)\right| \leqslant\left\|u^{n} v\right\|$.

Theorem 2. Let $u \in B_{P}^{M}(G)$ be such that $\sup \left\|u^{n}\right\|_{M}=C<\infty$, and let $L=\{x$; $|u(x)|=1\}$. Then $\left\|u^{n} v\right\|_{A_{p}} \rightarrow 0$ for each $v \in \bar{J}_{L}$.
(*) If L is a set of spectral synthesis then $\left\|u^{n} v\right\|_{A_{p}} \rightarrow 0$ for each $v \in I_{L}$.
Proof. Let $v \in \bar{J}_{L}, \varepsilon>0$. Let $v_{0} \in J_{L}$ be such that $\left\|v-v_{0}\right\|<\varepsilon$. then

$$
\left\|u^{n} v\right\| \leqslant\left\|u^{n}\left(v-v_{0}\right)\right\|+\left\|u^{n} v_{0}\right\| \leqslant C \varepsilon+\left\|u^{n} v_{0}\right\| \rightarrow C \varepsilon
$$

by the above lemma. If L has spectral synthesis, then $\bar{J}_{L}=I_{L}$.
Remarks. In many cases the condition $\sup \left\|u^{n}\right\|_{M}<\infty$ forces the set L to be a set of spectral synthesis:
(a) Let $p=2$ and G abelian. Assume that $u \in B(G)=M(\hat{G})^{\wedge}$ is such that $\sup \left\|u^{n}\right\|_{B(G)}<\infty$. Then $\sup \{|u(x)| ; x \in G\} \leqslant 1$ and $L=\{x ;|u(x)|=1\}$ is a closed subset of the coset ring of G and, as such, is even a strong Ditkin set, by J. E. Gilbert [5, 6] or B. Schreiber [15, Theorem 6.2 and 14, Theorem 2.6]. A fortiori, L is a set of spectral synthesis.

Foguel's result is thus improved in the
Corollary. Let G be l.c.a., $\mu \in M(G)$ satisfy sup $\left\|\mu^{n}\right\|<\infty$, and let $L=\{\gamma \in \Gamma$; $|\hat{\mu}(\gamma)|=1\}$. Then $\left\|\mu^{n} * f\right\|_{1} \rightarrow 0$ iff $f \in I_{L}=\left\{f \in L^{1}(G) ; \hat{f}=0\right.$ on $\left.L\right\}$. (Since clearly $|\hat{f}(r)| \leqslant\left\|\mu^{n} * f\right\|_{1}$ if $r \in L$.)
(b) Let $p=2, G$ arbitrary. Let $B(G)$ be as in [2], and let $u \in B(G) \subset B_{2}^{M}(G)$ be a positive definite function such that $u(e)=1$. Then $\|u\|_{B(G)}=1$ and $L=\{x ;|u(x)|$ $=1\}$ is a closed (not necessarily normal) subgroup of G. Then $\left\|u^{n}\right\|_{M}=\left\|u^{n}\right\|_{B(G)}=1$ and L has spectral synthesis, as shown by Takesake and Tatsuma in [16]. If $u \in B(G)$ only satisfies $\left|u\left(x_{0}\right)\right|=\|u\|=1$ at some x_{0} in G, then it can easily be shown that $\sup \left\|u^{n}\right\|<\infty$ and $L=\{x ;|u(x)|=1\}=x_{0} H$ for some closed subgroup $H \subset G$. Again L is a set of synthesis. If now $p \neq 2$, then closed subgroups $H \subset G$ are known only to have local spectral synthesis, i.e., $I_{H} \cap C_{00} \subset \bar{J}_{H}$; see Herz [8, p. 93].
(c) If $1<p<\infty, G$ arbitrary and $u \in B_{p}^{M}(G)$ is such that $\sup _{n}\left\|u^{n}\right\|<\infty$, let $L=\{x ;|u(x)|=1\}$. Then $\left\|u^{n} v\right\|_{A_{p}} \rightarrow 0$ only for $v \in \bar{J}_{L}$. It seems to be a hard, open question whether L has (local) spectral synthesis in this case. ${ }^{2}$

In the following, (i) improves the Choquet-Deny theorem [1, 13].
Theorem 3. Let $u \in B_{p}^{M}(G), \lambda \in \mathbb{C}$ and $E_{\lambda}=\left\{\phi \in P M_{p} ; u \cdot \phi=\lambda \phi\right\}$.
(i) $\operatorname{dim} E_{\lambda}=n<\infty$ if and only if $u^{-1}\{\lambda\}$ is finite or void. In this case $\operatorname{dim} E_{\lambda}=$ card $u^{-1}\{\lambda\}$ and $E_{\lambda}=\left\{\sum \alpha_{i} \delta_{a_{i}} ; a_{i} \in u^{-1}\{\lambda\}, \alpha_{i} \in \mathbb{C}\right\}$. Note that $n=0$ (i.e. $E_{\lambda}=$ $\{0\}$) iff $u^{-1}\{\lambda\}=\varnothing$.
(ii) If G is amenable and $\left(E_{\lambda},\| \|_{P M_{p}}\right)$ is a reflexive Banach space, then E_{λ} is finite dimensional.
(iii) If G is discrete and contains the free group on two generators, then there exists $u \in B_{2}^{M}(G)$ for which $E_{1}=\left\{\phi \in P M_{2} ; u \cdot \phi=\phi\right\}$ is isomorphic to l^{2} (a fortiori is reflexive infinite dimensional).

Remark. The reader should note that if $G=R=\hat{R}$ and $p=2$, then $P M_{2}=$ $L^{\infty}(\hat{R})=L^{\infty}(R)$ and every separable Banach space (reflexive or not) is isometric to a subspace of $P M_{2}$.

Proof. (i) If $v \in A_{p}, \phi \in P M_{p}=A_{p}^{*}$, then $\langle u \cdot \phi, v\rangle=\langle\phi, u v\rangle$. If $\phi \in E_{\lambda}, v \in A_{p}$, then $u \cdot(v \cdot \phi)=v \cdot(u \cdot \phi)=\lambda v \cdot \phi$. Thus E_{λ} is an A_{p}-submodule of $P M_{p}$ which is w^{*} closed. For any $a \in G, u \cdot \delta_{a}=u(a) \delta_{a}$. Thus $\left\{\delta_{x} ; \delta_{x} \in E_{\lambda}\right\}=\left\{\delta_{x} ; x \in u^{-1}\{\lambda\}\right\}$. The δ_{x} 's are linearly independent; thus $\operatorname{dim} E_{\lambda} \geqslant \operatorname{card} u^{-1}\{\lambda\}$. Assume now that $u^{-1}\{\lambda\}=\left\{a_{1}, \ldots, a_{n}\right\}$ is finite. If $\Phi \in E_{\lambda}$, any $x \in \operatorname{supp} \Phi$ is such that δ_{x} is a w* limit of a net $v_{\alpha} \cdot \Phi$ with $v_{\alpha} \in A_{p}$ (see [8, pp. 101, 118]). Hence $\delta_{x} \in E_{\lambda}$ and $x \in u^{-1}\{\lambda\}=\left\{a_{1}, \ldots, a_{n}\right\}$. Thus $\operatorname{supp} \Phi \subset\left\{a_{1}, \ldots, a_{n}\right\}$. A routine, well-known argument (see for example [7, proof of Theorem 1.3]) shows that $\Phi=\sum_{1}^{n} \alpha_{i} \delta_{a_{i}}$ for some $\alpha_{i} \in \mathbb{C}$. Thus $\operatorname{dim} E_{\lambda}=\operatorname{card} u^{-1}\{\lambda\}$ and $E_{\lambda}=\left\{\sum \alpha_{i} \delta_{a} ; \alpha_{i} \in \mathbb{C}, a_{i} \in u^{-1}\{\lambda\}\right\}$ in this case. Note that $E_{\lambda}=\{0\}$ iff $u^{-1}\{\lambda\}=\varnothing$ is just the Tauberian condition (T) [8, p. 101].
(ii) If G is amenable, any norm closed A_{p}-submodule of $P M_{p}$ which is reflexive is finite dimensional by our Theorem 1.3 in [7].
(iii) In this case $P M_{2} \subset l^{2}(G)$ and G contains an infinite Leinert set L, i.e., a set L such that the subspace $N=\left\{\phi \in P M_{2}, \phi=0\right.$ off $\left.L\right\}=l^{2}(L)$ (as sets) and, for some $c>0,\|\phi\|_{l^{2}} \leqslant\|\phi\|_{P M_{2}} \leqslant c\|\phi\|_{l^{2}}$ for all $\phi \in N$ (see [9, Satz 1]). A result of Figa-Talamanca and Picardello [3] implies that $1_{L} \in B_{M}^{2}(G)$; thus $N=\left\{\phi \in P M_{2}\right.$; $\left.1_{L} \cdot \phi=\phi\right\}$. If $u=1_{L}$ and $\lambda=1$ then $E_{1}=\left\{\phi \in P M_{2} ; 1_{L} \cdot \phi=\phi\right\}=N$ is isomorphic to l^{2}.
H. P. Rosenthal proves in [18, p. 39] that if G is abelian and $E \subset G$ closed, then A_{2} / I_{E} is reflexive iff E is finite.

We improve the result in [18] to all amenable groups G and all $1<p<\infty$. We also show that Rosenthal's result is false for $p=2$ and discrete G which contains some free nonabelian subgroup.

If $I \subset A_{p}$ is a closed subspace, A_{p} / I is equipped with the quotient norm.

[^1]Theorem 4. Let $I \subset A_{p}(G)$ be a closed ideal.
(a) If G is amenable, then A_{p} / I is reflexive if and only if it is finite dimensional. (Thus, if $E \subset G$ is closed then $A_{p}(E)=A_{p} / I_{E}$ is reflexive iff E is finite.)
(b) If G is discrete and contains the free group on two generators, then there is an infinite set $E \subset G$ such that $A_{2}(E)$ is isomorphic to l^{2} (a fortiori is reflexive).

Proof. (a) Let $N=\left(A_{p} / I\right)^{*}$. Then $N=\left\{\Phi \in P M_{p}(G) ;\langle\Phi, I\rangle=0\right\}$ and N is a w^{*} closed A_{p}-submodule of $P M_{p}$, since I is an ideal. Moreover, N is also reflexive. Since G is amenable, we can apply our Theorem 1.3 of [7] to get that N (hence A_{p} / I) is finite dimensional. In case $I=I_{E},\left\{\delta_{x}: x \in E\right\}$ is a linearly independent subset of N; hence E is finite.
(b) Let E be an infinite Leinert subset of G. Then $N=\left(A_{2} / I_{E}\right)^{*}$ is isomorphic as a Banach space to $l^{2}(E)$ (see (iii) of the above theorem). Thus $N^{*}=A_{2} / I_{E}$ also satisfies this condition.
H. P. Rosenthal proves in part of Theorem 2.12 [18, p. 53]) that if G is nondiscrete and abelian, then any nonzero ideal of $A_{2}(G)$ contains a subspace isomorphic to l^{1}. We improve this theorem in

Theorem 5. (a) Let G be any nondiscrete locally compact group. Then every closed nonzero ideal I of $A_{p}(G)$ contains a closed subspace isomorphic to l^{1}.
(b) If G is discrete infinite, then $A_{2}(G)$ contains a closed ideal I isomorphic to l^{2}, a fortiori none of its closed subspaces is isomorphic to l^{1} (due to M. A. Picardello [21]).

Remark. If G is compact abelian, $A(G)=l^{1}(Z)$; hence l^{1} cannot be replaced by any other infinite-dimensional Banach space nonisomorphic to l^{1}.

Proof. (a) Let $Z=\{x ; v(x)=0$ for each $v \in I\}$. Then $Z \neq G$ and Z is closed. Let $a \in G \sim Z$ and V be a neighborhood of e such that $a V^{2} \cap Z=\varnothing$. Let $V_{n}=V_{n}^{-1}$ be neighborhoods of e such that $\bar{V}_{1} \subset V, V_{n}^{2} \subset V_{n-1}$ if $n \geqslant 2, m\left(V_{n}\right) \rightarrow 0$. Let $\Psi_{n}=m\left(V_{n}\right)^{-1} 1_{V_{n}} * 1_{V_{n}}$. Then, as is easily seen, $\Psi_{n} \in A_{p} \cap C_{00}, \Psi_{n}(e)=1$ and $\left\|\Psi_{n}\right\|_{A_{p}} \leqslant m\left(V_{n}\right)^{-1}\left\|1_{V_{n}}\right\|_{p}\left\|1_{V_{V}}\right\|_{p^{\prime}}=1 \quad\left(1 / p+1 / p^{\prime}=1\right)$. Thus $\left\|\Psi_{n}\right\|_{A_{p}}=1=\Psi_{n}(e)$ and $\Psi_{n}(x)=0$ if x is off V_{n}^{2}.

Let $u_{n}=l_{a^{-1}} \Psi_{n}$, where $l_{a} u(x)=u(a x)$ for any $u \in A_{p}, a, x \in G$. Then, by definition of the A_{p} norm [8, p. 97], $\left\|u_{n}\right\|_{A_{p}}=1=u_{n}(a)$ and $u_{n}(x)=0$ if x is off $a V_{n}^{2}$. Thus, if $n \geqslant 2, u_{n} \in C_{00} \cap A_{p}$ and $u_{n}=0$ off $a V_{2}^{2}$, in particular off $a \bar{V}_{1}$ and $a \bar{V}_{1} \cap Z=\varnothing$. Thus u_{n} is in the smallest ideal whose zero set is Z and, in particular, in I. We claim that no subsequence of $\left\{u_{n}\right\}$ is weak Cauchy. In fact, assume that $u_{n_{i}}$ is a weak Cauchy subsequence. If $E=a \bar{V}$, then $u_{n_{i}} \in A_{E}^{p}(G)=\left\{v \in A_{p}\right.$; $\operatorname{supp} v \subset$ $E\}$. But $A_{E}^{p}(G)$ is weakly sequentially complete by Lemma 18 of [20]. Hence $u_{n_{i}} \rightarrow u$ $\sigma\left(A_{p}, P M_{p}\right)$ for some $u \in A_{p}^{E}$. In particular, for each $\mu \in M(G), \int u_{n_{i}} \mu \rightarrow \int u d \mu$. By taking $\mu=\delta_{a}$, we get $u(a)=1$. And if $x \notin a V_{k}^{2}$, then $u_{n_{i}}(x)=0$ if $n_{i} \geqslant k$. Hence $u(x)=0$ if $x \notin \bigcap_{n} a V_{n}^{2}$. Now $m\left(V_{n}^{2}\right) \leqslant m\left(V_{n-1}\right) \rightarrow 0$. Hence $\bigcap_{1}^{\infty} a V_{n}^{2}$ has void interior. But $u \in A_{p} \subset C_{0}(G)$; hence $\{a\} \subset\left\{x ;|u(x)|>\frac{1}{2}\right\} \subset \cap_{n} a V_{n}^{2}$. This is a contradiction. It follows that no subsequence of u_{n} is weak Cauchy. We now apply H. P. Rosenthal's deep Theorem 1 of [19, p. 805] and get that some subsequence $u_{n_{i}}$ of u_{n} is isomorphic to a canonical l^{1} basis.
(b) We follow the notation of Picardello [21]. By Theorem 1 of [21] every infinite subset of G contains a subset E which is a $\Lambda(4)$ set. By Proposition 2 of [21] and the remark after it, E is also a $\Lambda(2)$ set. However, by Remark 4 (after Definition 5 of [21]), $L^{1}(\Gamma)\left[L^{2}(\Gamma)\right]$ is isometrically isomorphic to $A_{2}(G)\left[l^{2}\right]$. It follows that the ideal $I=\left\{u \in A_{2}(G) ; u=0\right.$ off $\left.E\right\}$ with $A_{2}(G)$-norm is isomorphic to l^{2}.

The following theorem is related to the main result of J. E. Gilbert [5] on existence of projections which commute with convolution, onto w^{*} closed $A(G)$ submodules of $P M_{2}(G)$.

Let $S \subset B_{p}^{M}(G)$ be a norm bounded semigroup (with respect to multiplication). For example, $S=\left\{u^{n} ; n \geqslant 1\right\}$, where $u \in B_{P}^{M}$ satisfies sup $\left\|u^{n}\right\|<\infty$, is such a semigroup. Theorems 6.2 and 6.20 of Schreiber [15] clarify to some extent the spectrum of submodules F which can be expressed as in the next theorem.

Theorem 6. Let $S \subset B_{P}^{M}(G)$ be a norm bounded semigroup, and $F=\left\{\phi \in P M_{p}\right.$; $u \cdot \phi=\phi$ for each u in $S\}$. Then there exists a bounded linear onto projection P : $P M_{p} \rightarrow F$ such that $P(v \cdot \phi)=v \cdot P \phi$ for all v in A_{p}.

Proof. For each $\Phi \in P M_{p}$ let $K_{\Phi}=\mathrm{w}^{*} \operatorname{cl}\{\operatorname{Co} S \cdot \phi\}$, where $S \cdot \Phi=\{u \cdot \Phi$; $u \in S\}$ and Co denotes convex hull. Each K_{Φ} is a w* compact convex set which satisfies $s \cdot K_{\Phi} \subset K_{\Phi}$ for each $s \in S$. Furthermore, each operator $\psi \rightarrow s \cdot \psi$ on $P M_{p}$ is w^{*} - w^{*} continuous, and the semigroup of operators S on $P M_{p}$ is commutative. Hence, by the Markov-Kakutani theorem, $K_{\Phi} \cap F \neq \varnothing$ for each Φ in $P M_{p}$. We note now that F is a w* closed A_{p}-submodule of $P M_{p}$, and that the w^{*} operator closure of Co S in the space $L\left(P M_{p}\right)$ of operators from $P M_{p}$ to $P M_{p}$ (denote this set by $\overline{\mathrm{Co}}^{*} S$) is a semigroup which is a w^{*} ot compact set; see A. T. Lau [11] just preceding Theorem 2.1. (Here w^{*} ot denotes the w^{*} operator topology on $L\left(P M_{p}\right)$.)

We apply now Theorem 2.1 of A. T. Lau (and the remark after its proof) [11] with $X=P M_{p}$ and get that there exists an operator $P \in \overline{\mathrm{Co}}^{*}(S)$ which is F-stationary on $X=P M_{P}$, i.e., such that $P \Phi \in F$ for each Φ in $P M_{p}$. Note here that S need not consist of only isometric operators on $P M_{p}$ (as stated in the introduction of [11]). Lau's proof works for any norm bounded semigroup. Let $u_{\alpha} \in \operatorname{Co} S$ be such that $\left\langle u_{\alpha} \cdot \phi, v\right\rangle \rightarrow\langle P \phi, v\rangle$ for each $\phi \in P M_{p}$ and $v \in A_{p}$. Let $Q: P M_{p} \rightarrow P M_{p}$ be w^{*} - w^{*} continuous and commute with each $u \in S$, i.e., $Q(u \cdot \phi)=u \cdot Q \phi$ for each $\phi \in P M_{p}$. Then this holds also for each $u \in \operatorname{CoS}$. But then $\left\langle u_{\alpha} \cdot Q \phi, v\right\rangle=$ $\left\langle Q\left(u_{\alpha} \phi\right), v\right\rangle \rightarrow\langle Q(P \phi), v\rangle$, and the left side converges to $\langle P(Q \phi), v\rangle$ for all $v \in A_{p}$. Hence, P commutes with every w^{*} continuous operator $Q: P M_{p} \rightarrow P M_{p}$ which commutes with each operator $\phi \rightarrow s \cdot \phi$ for each $s \in S$. But for any $v \in A_{p}$ the operator $Q_{v}(\phi)=v \cdot \phi$ is such an operator. It follows that $P(v \cdot \phi)=v \cdot P \Phi$ for all $v \in A_{p}$ and all $\Phi \in P M_{p}$. If now $\Phi \in F$, then $u \cdot \Phi=\Phi$ for each $u \in \operatorname{Co} S$. Thus $P \Phi=\Phi$ since $P \in \overline{\operatorname{Co}^{*}}(S)$. But $P\left(P M_{p}\right) \subset F$, since P is F-stationary. It follows that P is the required projection onto F.

Remark. (a) Let \mathscr{P} denote the set of all F-stationary operators $P \in \overline{\mathrm{Co}}^{*}(S)$ on $P M_{p}$. Then Lau's Theorem $2.1[11]$ implies that $\left\{\left(\overline{\left.\left.\mathrm{Co}^{*} S\right)(\phi)\right\} \cap F=\{P \phi ; P \in \mathscr{P}\}, ~}\right.\right.$ for each $\phi \in P M_{p}$.
(b) The main idea in the above proof is due to Anthony Lau and is also used in Theorem 2 of [17].

References

1. G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu * \sigma$, C. R. Acad. Sci. Paris 250 (1960), 799-801.
2. P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
3. A. Figa-Talamanca and M. Picardello, Multiplicateurs de $A(G)$ qui ne sont pas dans $B(G), \mathrm{C} . \mathrm{R}$. Acad. Sci. Paris Ser. A 227 (1973), 117-119.
4. S. R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975), 368-370.
5. J. E. Gilbert, On projections of $L^{\infty}(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. 19 (1969), 69-88.
6. \qquad , On a strong form of spectral synthesis, Ark. Mat. 7 (1969), 571-575.
7. E. E. Granirer, Some results on $A_{p}(G)$ submodules of $P M_{p}(G)$, Colloq. Math. (to appear).
8. C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123.
9. M. Leinert, Multiplication gewisser discreter Gruppen, Studia Math. 52 (1974), 149-158.
10. Francoise Lust, L'espace des fonctions presque-periodiques dont le spectre est contenu dans un ensemble compact denombrable a la propriété de Schur, Colloq. Math. 41 (1979), 273-284.
11. Anthony To-Ming Lau, Semigroups of operators on dual Banach spaces, Proc. Amer. Math. Soc. 54 (1976), 393-396.
12. S. Massaheb, A note on Fourier transforms, Bull. London Math. Soc. 11 (1979).
13. T. Ramsey and Yitzhak Weit, Ergodic and mixing properties of measures on locally compact abelian groups, Proc. Amer. Math. Soc. 92 (1984), 519-520.
14. B. M. Schreiber, On the coset ring and strong Ditkin set, Pacific J. Math. 32 (1970), 805-812.
15. \qquad , Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970), 405-431.
16. M. Takesaki and N. Tatsuma, Duality and subgroups. II, J. Funct. Anal. 11 (1972), 184-190.
17. A. Lau and V. Losert, W^{*}-closed complemented invariant subspaces of $L^{\infty}(G)$ and amenable locally compact groups (submitted).
18. H. P. Rosenthal, Projections onto translation invariant subspaces of $L^{p}(G)$, Mem. Amer. Math. Soc. No. 63 (1966).
\qquad , Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.
19. E. E. Granirer, On some spaces of linear functionals on the algebras $A_{p}(G)$, for locally compact groups, Colloq. Math. (to appear).
20. M. A. Picardello, Lacunary sets in discrete noncommutative groups, Boll. Un. Mat. Ital. 4 (1973), 494-508.

Department of Mathematics, The University of British Columbia, Vancouver, B.C. V6T 1W5, Canada

[^0]: Received by the editors September 11, 1984.
 1980 Mathematics Subject Classification. Primary 43A30, 43A25.
 ${ }^{1}$ Thanks are due to T. Ramsey for providing us with a preprint of [13] and for discussions related to it.

[^1]: ${ }^{2}$ If the closed set L is a coset of an amenable or normal subgroup H (finite, compact, abelian or solvable are such), one still has that $\bar{J}_{L .}=I_{L .}$ (see $[\mathbf{8}, \mathrm{pp} .92,103]$ for more).

