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ON SOME PROPERTIES OF THE BANACH ALGEBRAS Ap(G)

FOR LOCALLY COMPACT GROUPS

Dedicated to my teacher Rafael A rtzy with gratitude and respect

EDMOND E. GRANIRER

Abstract. We strengthen and improve theorems of Choquet-Deny and of Foguel

concerning convolution equations and iterates of convolution of a measure to all

algebras Ap{G) and all locally compact groups. Furthermore, we improve results of

H. P. Rosenthal on ideals of A(G) to the algebras Ap(G) and show that some hold

for amenable groups but not for free nonabelian groups. Finally, we improve a

(possibly) weak version of a theorem of Gilbert on projections onto some subspaces

of LX(G) to all locally compact groups.

Introduction. In [13] T. Ramsey and Y. Weit provide new proofs for the following

theorem of S. Foguel and of Choquet-Deny concerning iterates of convolutions of a

measure on a locally compact abelian group G with dual I".1

Theorem (Foguel). Let G be an I.e.a. group and a g M(G) be such that

supJ/i-H < oo. Then lim||p" * f\\x = 0 for each f G Ie= {/ G L\G); /(e) = 0} if

and only if\p(y)\ < 1 for ally G T - (e).

Here p" is the «-times convolution power of a and e denotes the unit of T.

Theorem (Choquet-Deny). Let G be an I.e.a. group and |i e M(G). The

following are equivalent:

(ï)forf g LX(G), p * f = f implies f = constant.

(ii)p(-y) # lfory g T - {e}.

We strengthen and improve (the dual version of) both results to all locally

compact groups and all algebras Ap(G), B^G), PMp(G) in the first two theorems

of the paper and in the remarks after them. (If G is abelian and p = 2, then

A2(G) = A(G) = L\T) \ B?(G) = B(G) = M(T) " and PM2(G) = LX(T).) Fur-

thermore, we point out that if, for some X G C and u G B™, Ex = [<b g PMp;

u ■ <b = X<¡>) is a reflexive Banach space and if G is amenable, then Ex is finite

dimensional. This is false if G is discrete and contains the free group on two

generators (via existence of Leinert sets in G).

In Theorem 4 we improve a result of H. P. Rosenthal [18, p. 39] to all amenable

groups G. We show that, if for some closed ideal /, Ap/I is a reflexive Banach space

and if G is amenable, then Ap/I is finite dimensional. Again, using Leinert sets, we
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get a counterexample in case G is discrete and contains a free group on two

generators.

In Theorem 5 we improve the following result of H. P. Rosenthal, which is part of

Theorem 2.12 on p. 53 in [18]: If G is any nondiscrete locally compact abelian group,

then any nonzero ideal of A(G) contains an isomorphic copy of ll. We show that this

result is true for all nondiscrete G and for all algebras Ap(G). This is false if G is

discrete andp = 2, as shown by M. A. Picardello [21].

In Theorem 6 we prove a result related to the beautiful main theorem of J. E.

Gilbert on existence of projections onto w* closed translation invariant subspaces of

LX(G). Again this is done in the framework of the algebras Ap, B™, PMp.

The reader not familiar with the algebras Ap may find the results that follow of

interest even forp = 2 and abelian G.

Definitions and notation. C will denote the complex field. G will always denote a

locally compact group, C0(G) (C^G)) the continuous functions on G, which tend

to 0 at oo (with compact support). Lp(G), 1 < p < oo, will be the usual spaces of

p-integrable functions with respect to a fixed left Haar measure m and ||/|| =

(f\f\p dm)1/p, U/H,» = esssup|/(jc)|. We follow Herz [8] for notation and properties

of the Banach algebras Ap(G) = A . One has that A2(G) = A(G) is the Fourier

algebra of G à la Eymard [2]. We denote by ||t?||^ the norm in Ap (or just ||u|| when

the context is clear). We denote by B^ = Bp(G) the set of bounded complex

functions m on G such that uv G Ap(G) for all v g Ap. The norm in BpM is given by

\\u\\M= swp{\\uv\\A ; IMI,, = 1}. If G is abelian with dual I\ then A2(G) = A(G) =
L\Ty and 52M(G) = B(G) = M(Ty, where M(T) is the Banach algebra of bounded

complex measures on T and * denotes Fourier transform. PMp(G) is the Banach

space dual of Ap as in [8]. If G is abelian, then PM2(G) = L°°(T). We define the

module action of B™ on PMp by (u ■ <b,v) = (<j>, uv) for <j> g PMp, v g Ap,

u G ßM. If t; g Ap, then supp v denotes the closure in G of {x; v(x) # 0}.

If C is a subset of Ap, then C will denote the norm closure of C in Ap.

Some interesting properties of the algebras Ap(G) for abelian G have been

obtained by N. Lohoue in C. R. Acad. Sei. Paris Ser. A 273 (1971), 893-896.

If A" is a Banach space, then L(X) will denote the bounded linear operators T:

X -► X with ||T|| = supfJTxH; \\x\\ = 1}. If A, B are subsets of C, then A ~ B will

denote the set-theoretical difference of A and B. And if t is a topology on C, then

t cl A will denote the r-closure of A in C.

The following lemma was obtained independently of the proofs given in [13].

Lemma 1. Let u g BpM(G) be such that \u(x)\ < 1 for all x and, let L = [x;

\u(x)\ = 1}. If v g Cqo n AP(G) « sucn that (SUPP v} H L = 0, then \\u"v\\A -» 0

as n -* oo. (L = 0 is allowed.)

Proof. Let S = supp v. S is compact and there exists a symmetric neighborhood

of e, V such that SV2 D LV= 0 and V is compact. For x in G define

g(x) = x(vyl[isv*iy](x) = \(vyl\(xvnsv).

Then g g Ap by the definition of Ap, g(x) = 1 on S, g(x) = 0 if x is off SV2 and

0 < g(x) < 1 for all x. Furthermore, ug g Ap n Cqq. Hence \u(x)g(x)\ < 1 for all x
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in G (if x G L then g(x) = 0, and if x £ L then \u(x)\ < 1, while 0 < g < 1). Let

d = sup{|M(x)g(x)|; x 6G) < 1. The maximal ideal space of ^(G) is G [8, p.

102], hence the spectral radius of ug is d = limn\\(ug)n\\1/n < 1. Now choose 8 > 0

such that ¿/ + 8 < 1. Then for some n0 we have ||(Mg)"||,4 < (d + 8)" if « 3* «0-

Hence IKwg)"!!^  -* 0. But gn(x) - 1 if x e S; thus g"v = u.'lt follows that

\\Wv\\Ap =\\u"gnv\\Ap <||«VlU>IU, - 0.

Remark 1. Note that no assumption on the boundedness of ||k"|Ia/ is made in the

above lemma. If, however, sup||wn|| = C < oo, then |w"(x)| < C for all n; thus

\u(x)\ < 1 for all x.

Let L c G be closed. Let JL= {v g A n C^; supp iin¿= 0} and IL — {u g

.4^; t; = 0 on L). Clearly JL c IL.

Remark 2. If « g B™ is such that \\u"v\\ -* 0 for each de 't (where L c G is any

closed set), then \u(x)\ < 1 for each x g G - L. Since if |m(x0)| = 1, jc0 g G ~ L,

then there is some v e JL such that v(xQ) = 1. Then 1 = \u"(x0)v(x0)\ < ||u"i;||.

Theorem 2. Le/ « g B^(G) be such that swp\\u"\\M = C < oo, W /e/ L = [x;

\u(x)\ = 1}. Then \\unv\\A¡¡ -» 0 for each v G /L.

(*) 7/L w a ie/ of spectral synthesis then \\u"v\\A  -* 0 for each v g II.

Proof. Let v g Jl, e > 0. Let u0 g /¿ be such that \\v - v0\\ < e. then

||w"i>||<||w"(í; - i>o)|| + ll«',tfoll< Ce +ll"XlH Ce

by the above lemma. If L has spectral synthesis, then JL = IL.

Remarks. In many cases the condition sup||w"||M < oo forces the set L to be a set

of spectral synthesis:

(a) Let p = 2 and G abelian. Assume that m e 5(G) = M(G) ' is such that

sup||i/"||B(C) < oo. Then sup{|w(x)|; x g G} < 1 and L = {x; \u(x)\ = 1} is a

closed subset of the coset ring of G and, as such, is even a strong Ditkin set, by J. E.

Gilbert [5, 6] or B. Schreiber [15, Theorem 6.2 and 14, Theorem 2.6]. A fortiori, L is

a set of spectral synthesis.

Foguel's result is thus improved in the

Corollary. Let G be I.e.a., p g M(G) satisfy sup||p"|| < oo, and let L = {y g T;

|A(y)| = 1}. Then Up" * /||, ■* 0 !///€= 1L - {/€ LX(G);/ = 0 on L}. (S&k» c/«w(v

l/vOKIIriWIIi'/'-eL.)

(b) Letp = 2, G arbitrary. Let B(G) be as in [2], and let u g B(G) C 52M(G) be a

positive definite function such that u(e) = 1. Then ||w||ß(C) = 1 and L = {x; \u(x)\

= 1} is a closed (not necessarily normal) subgroup of G. Then ||w"||M = ||m"||b(G) = 1

and L has spectral synthesis, as shown by Takesake and Tatsuma in [16]. If

u G B(G) only satisfies |w(*0)| = ||u|| = 1 at some x0 in G, then it can easily be

shown that sup||u"|| < oo and L = [x; \u(x)\ = 1} = x0H for some closed sub-

group H c G. Again L is a set of synthesis. If now p ¥= 2, then closed subgroups

H c G are known only to have local spectral synthesis, i.e., IH O Qq c Jh; see Herz

[8, p. 93].
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(c) If 1 < p < oo, G arbitrary and u g BpM(G) is such that sup„||i/"|| < oo, let

L = [x; \u(x)\ = 1}. Then \\u"v\\A -* 0 only for v g Jl. It seems to be a hard, open

question whether L has (local) spectral synthesis in this case.2

In the following, (i) improves the Choquet-Deny theorem [1, 13].

Theorem 3. Let u g BJ?(G), X g C andEx = {</> g PMp, u ■ <b = X(b}.

(i) dim Ex = n < oo if and only if u'1{X} is finite or void. In this case dim Ex =

card m^a} and Ex = {Ta,ôa ; a, g w_1{X}, a, g C}. Note that n = 0 (i.e. Ex =

{0})///U-1{A}= 0.

(ii) If G is amenable and (Ex, || || ̂ ^ ) is a reflexive Banach space, then Ex is finite

dimensional.

(iii) // G ÎS discrete and contains the free group on two generators, then there exists

u G B2(G) for which Ex = [<b G PM2; u ■ <j> = c¡>) is isomorphic to I2 (a fortiori is

reflexive infinite dimensional).

Remark. The reader should note that if G = R = R and p = 2, then PM2 =

L°°(R) = L°°(R) and every separable Banach space (reflexive or not) is isometric to

a subspace of PM2.

Proof, (i) If v g Ap, <b g PMp = A*, then (u ■ <|>, v) = (<b, uv). If <b g Ex, v g Ap,

then u ■ (v ■ <p) = v • (u • <j>) = Xv ■ <b. Thus Ex is an A -submodule of PMp which is

w* closed. For any a g G, u ■ 8a = u(a)8a. Thus [8X; 8X g Ex} = [8X; x g u1{X}}.

The 8x's are linearly independent; thus dim Ex > cardw_1{\}. Assume now that

w_1{X} = {ax,...,a„) is finite. If $ g Ex, any x g supp $ is such that 8X is a w*

limit of a net t;a • $ with <;a g Ap (see [8, pp. 101, 118]). Hence 8X g £a and

x g u-1{A} = {ax,.. .,an). Thus supp$ c {a,,...,an}. A routine, well-known

argument (see for example [7, proof of Theorem 1.3]) shows that 4> = T."a¡8a for

some a, g C. Thus dim Ex = card «-1{X} and Ex = {'Laj8a ; a, g C, a¡ g u~1{X})

in this case. Note that Ex = {0} iff u_1{A} = 0 is just the Tauberian condition (T)

[8, p. 101].
(ii) If G is amenable, any norm closed ,4^-submodule of PMp which is reflexive is

finite dimensional by our Theorem 1.3 in [7].

(iii) In this case PM2 c /2(G) and G contains an infinite Leinert set L, i.e., a set L

such that the subspace N = {<f> G PM2, <f> = 0 off L) = l2(L) (as sets) and, for

some c > 0, ||<f>||,2 < H^H/»^ < c\\<t>\\/2 for all <p g N (see [9, Satz 1]). A result of

Figa-Talamanca and Picardello [3] implies that 1, G Bli(G); thus N = {(b g PM2;

1L ■ <p = <p}. If M = 1L and X = 1 then £j = [<j> g /'Mj; 1l • <b = <b) = N is isomor-

phic to I2.

H. P. Rosenthal proves in [18, p. 39] that if G is abelian and E c G closed, then

A2/IF is reflexive iff £ is finite.

We improve the result in [18] to all amenable groups G and all 1 < p < oo. We

also show that Rosenthal's result is false for p = 2 and discrete G which contains

some free nonabelian subgroup.

If / c A  is a closed subspace, Ap/I is equipped with the quotient norm.

2 If the closed set L is a coset of an amenable or normal subgroup H (finite, compact, abelian or

solvable are such), one still has that J, = I¡ (see [8, pp. 92, 103] for more).
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Theorem 4. Let I c Ap(G)be a closed ideal.

(a) // G is amenable, then A /I is reflexive if and only if it is finite dimensional.

(Thus, if E c G is closed then Ap(E) = Ap/IE is reflexive iffE is finite.)

(b) If G is discrete and contains the free group on two generators, then there is an

infinite set E c G such that A2(E) is isomorphic to I2 (a fortiori is reflexive).

Proof, (a) Let N = (Ap/I)*. Then N = {$ g PMp(G); <$, I) = 0} and N is a

w* closed ^-submodule of PMp, since / is an ideal. Moreover, N is also reflexive.

Since G is amenable, we can apply our Theorem 1.3 of [7] to get that N (hence A /I)

is finite dimensional. In case / = IE, [8X: x g E} is a linearly independent subset of

N; hence E is finite.

(b) Let E be an infinite Leinert subset of G. Then N = (A2/IE)* is isomorphic as

a Banach space to l2(E) (see (iii) of the above theorem). Thus N* = A2/IE also

satisfies this condition.

H. P. Rosenthal proves in part of Theorem 2.12 [18, p. 53]) that if G is nondiscrete

and abelian, then any nonzero ideal of A2(G) contains a subspace isomorphic to I1.

We improve this theorem in

Theorem 5. (a) Let G be any nondiscrete locally compact group. Then every closed

nonzero ideal I of'/4(G) contains a closed subspace isomorphic to ll.

(b) If G is discrete infinite, then A2(G) contains a closed ideal I isomorphic to I2, a

fortiori none of its closed subspaces is isomorphic to I1 (due to M. A. Picardello [21]).

Remark. If G is compact abelian, A(G) = ll(Z); hence I1 cannot be replaced by

any other infinite-dimensional Banach space nonisomorphic to I1.

Proof, (a) Let Z = [x; v(x) = 0 for each v g /}. Then Z + G and Z is closed.

Let a g G ~ Z and V be a neighborhood of e such that aV2 C\ Z = 0. Let

Vn = V;1 be neighborhoods of e such that Vx c V, V2 c Vn_x if n > 2, m{V„) -» 0.

Let % = m(F„)_1lK *1K. Then, as is easily seen, % g ^n Qq, ¥„f» = 1 and

ii^ji/í, < "K^mvjgívju- = i a//» + w = i). Thus h*ji^ = i = *■„(*)
and *n(;c) = 0 if x is off V2.

Let un = la-^n, where luu(x) = u(ax) for any u g /4 , a, x g G. Then, by

definition of the /4p norm [8, p. 97], \\u„\\A = 1 = w„(a) and k„(x) = 0 if x is off

izK„2. Thus, if « > 2, í/„ g Cqo D Ap and w„ = 0 off aV2, in particular off aVx and

ciK, n Z = 0. Thus un is in the smallest ideal whose zero set is Z and, in particular,

in /. We claim that no subsequence of {un} is weak Cauchy. In fact, assume that w„

is a weak Cauchy subsequence. If E = aV, then u„ G/4£(G)={ug Ap; supp v c

E}. But /4£(G) is weakly sequentially complete by Lemma 18 of [20]. Hence un -> w

ai/4^,, /"ALj) for some u g ,4^. In particular, for each p g M(G), ¡u„ji -* Ju da. By

taking p = 8a, we get «(a) = 1. And if x G aV2, then «„ (x) = 0 if n¡ > k. Hence

u(x) = 0 if x G n„aF„2. Now w(F„2) < m(Vn_x) -> 0. Hence nî°a^,2 has void

interior. But m g Ap c C0(G); hence {a} c (x; |«(x)| > 3} c C\„aV2. This is a

contradiction. It follows that no subsequence of w„ is weak Cauchy. We now apply

H. P. Rosenthal's deep Theorem 1 of [19, p. 805] and get that some subsequence un

of un is isomorphic to a canonical I1 basis.
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(b) We follow the notation of Picardello [21]. By Theorem 1 of [21] every infinite

subset of G contains a subset E which is a A (4) set. By Proposition 2 of [21] and the

remark after it, E is also a A (2) set. However, by Remark 4 (after Definition 5 of

[21]), L\T) [L2(T)] is isometrically isomorphic to A2(G) [I2]. It follows that the

ideal / = {uG/42(G);w = 0off£'} with A2(G)-norm is isomorphic to I2.

The following theorem is related to the main result of J. E. Gilbert [5] on existence

of projections which commute with convolution, onto w* closed A(G) submodules

ofFM2(G).

Let S c BpM(G) be a norm bounded semigroup (with respect to multiplication).

For example, S = [u"; n ^ 1}, where u g Bp satisfies sup||«"|| < oo, is such a

semigroup. Theorems 6.2 and 6.20 of Schreiber [15] clarify to some extent the

spectrum of submodules F which can be expressed as in the next theorem.

Theorem 6. Let S c Bp(G) be a norm bounded semigroup, and F = {<#> G PM ;

u ■ <f> = <b for each u in S}. Then there exists a bounded linear onto projection P:

PMp -» F such that P(v ■ <b) = v ■ P<bfor all v in Ap.

Proof. For each $ g PMp let K9 = w*cl{Co5' • d>}, where S ■ 3> = {u ■ 3>;

u g 5} and Co denotes convex hull. Each K<¡, is a w* compact convex set which

satisfies s ■ K^ c K^ for each s g S. Furthermore, each operator \p -* s ■ \p on PMp

is w*-w* continuous, and the semigroup of operators 5 on PMp is commutative.

Hence, by the Markov-Kakutani theorem, K9 n F # 0 for each $ in PMp. We note

now that F is a w* closed /4^-submodule of PM and that the w* operator closure of

Co 5 in the space L(PMp) of operators from PMp to PMp (denote this set by Co* S)

is a semigroup which is a w*ot compact set; see A. T. Lau [11] just preceding

Theorem 2.1. (Here w* ot denotes the w* operator topology on L(PMp).)

We apply now Theorem 2.1 of A. T. Lau (and the remark after its proof) [11] with

X = PMp and get that there exists an operator P g Co*(S) which is F-stationary on

X = PMP, i.e., such that P<b G F for each $ in PMp. Note here that S need not

consist of only isometric operators on PMp (as stated in the introduction of [11]).

Lau's proof works for any norm bounded semigroup. Let ua g Co S be such that

(ua ■ <p, v) -> (Pep, v) for each <b g PMp and v g Ap. Let Q: PMp -* PMp be

w*-w* continuous and commute with each «eS, i.e., Q(u ■ <j>) = u • Q§ for each

<í> g PMp. Then this holds also for each «eCo5. But then (ua ■ Q<p, v) =

(Q(u¿t>),v) -* (Q(P<t>),v), and the left side converges to (P(Q<t>),v) for all

v G A . Hence, P commutes with every w* continuous operator Q: PM -» PMp

which commutes with each operator <£ -» 5 • <p for each seS. But for any v g A

the operator QL,(<?) = v ■ <b is such an operator. It follows that P(v ■ <p) = v ■ P<E> for

all v g Ap and all $ G PMp. If now $ g F, then « • $ = O for each ueCoS. Thus

p$ = dp since P G Co*(S). But P(PMp) c F, since P is F-stationary. It follows

that P is the required projection onto F.

Remark, (a) Let & denote the set of all F-stationary operators P g Co* (S) on

PMp. Then Lau's Theorem 2.1 [11] implies that {(Co* S)(<*>)} n F = {P<¡>; P G &}

for each <p G PMp.

(b) The main idea in the above proof is due to Anthony Lau and is also used in

Theorem 2 of [17].
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