ON SOME PROPERTIES OF THE BANACH ALGEBRAS $A_p(G)$ FOR LOCALLY COMPACT GROUPS

Dedicated to my teacher Rafael Artzy with gratitude and respect

EDMOND E. GRANIRER

ABSTRACT. We strengthen and improve theorems of Choquet-Deny and of Foguel concerning convolution equations and iterates of convolution of a measure to all algebras $A_p(G)$ and all locally compact groups. Furthermore, we improve results of H. P. Rosenthal on ideals of A(G) to the algebras $A_p(G)$ and show that some hold for amenable groups but not for free nonabelian groups. Finally, we improve a (possibly) weak version of a theorem of Gilbert on projections onto some subspaces of $L^{\infty}(G)$ to all locally compact groups.

Introduction. In [13] T. Ramsey and Y. Weit provide new proofs for the following theorem of S. Foguel and of Choquet-Deny concerning iterates of convolutions of a measure on a locally compact abelian group G with dual Γ .

THEOREM (FOGUEL). Let G be an l.c.a. group and $\mu \in M(G)$ be such that $\sup_n \|\mu^n\| < \infty$. Then $\lim \|\mu^n * f\|_1 = 0$ for each $f \in I_e = \{f \in L^1(G); \hat{f}(e) = 0\}$ if and only if $|\mu(\gamma)| < 1$ for all $\gamma \in \Gamma \sim \{e\}$.

Here μ^n is the *n*-times convolution power of μ and *e* denotes the unit of Γ .

THEOREM (CHOQUET - DENY). Let G be an l.c.a. group and $\mu \in M(G)$. The following are equivalent:

- (i) for $f \in L^{\infty}(G)$, $\mu * f = f$ implies f = constant.
- (ii) $\mu(\gamma) \neq 1$ for $\gamma \in \Gamma \sim \{e\}$.

We strengthen and improve (the dual version of) both results to all locally compact groups and all algebras $A_p(G)$, $B_p^M(G)$, $PM_p(G)$ in the first two theorems of the paper and in the remarks after them. (If G is abelian and p=2, then $A_2(G)=A(G)=L^1(\Gamma)\,\hat{}$, $B_2^M(G)=B(G)=M(\Gamma)\,\hat{}$ and $PM_2(G)=L^\infty(\Gamma).$) Furthermore, we point out that if, for some $\lambda\in\mathbb{C}$ and $u\in B_p^M$, $E_\lambda=\{\phi\in PM_p; u\cdot\phi=\lambda\phi\}$ is a reflexive Banach space and if G is amenable, then E_λ is finite dimensional. This is false if G is discrete and contains the free group on two generators (via existence of Leinert sets in G).

In Theorem 4 we improve a result of H. P. Rosenthal [18, p. 39] to all amenable groups G. We show that, if for some closed ideal I, A_p/I is a reflexive Banach space and if G is amenable, then A_p/I is finite dimensional. Again, using Leinert sets, we

Received by the editors September 11, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 43A30, 43A25.

¹Thanks are due to T. Ramsey for providing us with a preprint of [13] and for discussions related to it.

get a counterexample in case G is discrete and contains a free group on two generators.

In Theorem 5 we improve the following result of H. P. Rosenthal, which is part of Theorem 2.12 on p. 53 in [18]: If G is any nondiscrete locally compact abelian group, then any nonzero ideal of A(G) contains an isomorphic copy of l^1 . We show that this result is true for all nondiscrete G and for all algebras $A_p(G)$. This is false if G is discrete and p = 2, as shown by M. A. Picardello [21].

In Theorem 6 we prove a result related to the beautiful main theorem of J. E. Gilbert on existence of projections onto w* closed translation invariant subspaces of $L^{\infty}(G)$. Again this is done in the framework of the algebras A_p , B_p^M , PM_p .

The reader not familiar with the algebras A_p may find the results that follow of interest even for p = 2 and abelian G.

Definitions and notation. $\mathbb C$ will denote the complex field. G will always denote a locally compact group, $C_0(G)$ ($C_{00}(G)$) the continuous functions on G, which tend to 0 at ∞ (with compact support). $L^p(G)$, $1 \le p \le \infty$, will be the usual spaces of p-integrable functions with respect to a fixed left Haar measure m and $||f||_p = (\int |f|^p dm)^{1/p}$, $||f||_{\infty} = \text{ess sup}|f(x)|$. We follow Herz [8] for notation and properties of the Banach algebras $A_p(G) = A_p$. One has that $A_2(G) = A(G)$ is the Fourier algebra of G à la Eymard [2]. We denote by $||v||_{A_p}$ the norm in A_p (or just ||v|| when the context is clear). We denote by $B_p^M = B_p^M(G)$ the set of bounded complex functions u on G such that $uv \in A_p(G)$ for all $v \in A_p$. The norm in B_p^M is given by $||u||_M = \sup\{||uv||_{A_p}; ||v||_{A_p} = 1\}$. If G is abelian with dual Γ , then $A_2(G) = A(G) = L^1(\Gamma)^n$ and $B_2^M(G) = B(G) = M(\Gamma)^n$, where $M(\Gamma)$ is the Banach algebra of bounded complex measures on Γ and Γ denotes Fourier transform. $PM_p(G)$ is the Banach space dual of A_p as in [8]. If G is abelian, then $PM_2(G) = L^\infty(\Gamma)$. We define the module action of B_p^M on PM_p by $\langle u \cdot \phi, v \rangle = \langle \phi, uv \rangle$ for $\phi \in PM_p$, $v \in A_p$, $u \in B_p^M$. If $v \in A_p$, then supp v denotes the closure in G of $\{x; v(x) \neq 0\}$.

If C is a subset of A_p , then \overline{C} will denote the norm closure of C in A_p .

Some interesting properties of the algebras $A_p(G)$ for abelian G have been obtained by N. Lohoue in C. R. Acad. Sci. Paris Ser. A 273 (1971), 893–896.

If X is a Banach space, then L(X) will denote the bounded linear operators $T: X \to X$ with $||T|| = \sup\{||Tx||; ||x|| = 1\}$. If A, B are subsets of C, then $A \sim B$ will denote the set-theoretical difference of A and B. And if τ is a topology on C, then τ cl A will denote the τ -closure of A in C.

The following lemma was obtained independently of the proofs given in [13].

LEMMA 1. Let $u \in B_p^M(G)$ be such that $|u(x)| \le 1$ for all x and, let $L = \{x; |u(x)| = 1\}$. If $v \in C_{00} \cap A_p(G)$ is such that $\{\sup v\} \cap L = \emptyset$, then $\|u^n v\|_{A_p} \to 0$ as $n \to \infty$. $(L = \emptyset \text{ is allowed.})$

PROOF. Let $S = \sup v$. S is compact and there exists a symmetric neighborhood of e, V such that $SV^2 \cap LV = \emptyset$ and \overline{V} is compact. For x in G define

$$g(x) = \lambda(V)^{-1}[1_{SV} * 1_V](x) = \lambda(V)^{-1}\lambda(xV \cap SV).$$

Then $g \in A_p$ by the definition of A_p , g(x) = 1 on S, g(x) = 0 if x is off SV^2 and $0 \le g(x) \le 1$ for all x. Furthermore, $ug \in A_p \cap C_{00}$. Hence |u(x)g(x)| < 1 for all x

in G (if $x \in L$ then g(x) = 0, and if $x \notin L$ then |u(x)| < 1, while $0 \le g \le 1$). Let $d = \sup\{|u(x)g(x)|; x \in G\} < 1$. The maximal ideal space of $A_p(G)$ is G [8, p. 102], hence the spectral radius of ug is $d = \lim_n ||(ug)^n||^{1/n} < 1$. Now choose $\delta > 0$ such that $d + \delta < 1$. Then for some n_0 we have $||(ug)^n||_{A_p} < (d + \delta)^n$ if $n \ge n_0$. Hence $||(ug)^n||_{A_p} \to 0$. But $g^n(x) = 1$ if $x \in S$; thus $g^nv = v$. It follows that

$$||u^n v||_{A_n} = ||u^n g^n v||_{A_n} \le ||u^n g^n||_{A_n} ||v||_{A_n} \to 0.$$

REMARK 1. Note that no assumption on the boundedness of $||u^n||_M$ is made in the above lemma. If, however, $\sup ||u^n|| = C < \infty$, then $|u^n(x)| \le C$ for all n; thus $|u(x)| \le 1$ for all x.

Let $L \subset G$ be closed. Let $J_L = \{v \in A_p \cap C_{00}; \text{ supp } v \cap L = \emptyset\}$ and $I_L = \{v \in A_p; v = 0 \text{ on } L\}$. Clearly $\bar{J}_L \subset I_L$.

REMARK 2. If $u \in B_p^M$ is such that $||u^nv|| \to 0$ for each $v \in J_L$ (where $L \subset G$ is any closed set), then |u(x)| < 1 for each $x \in G \sim L$. Since if $|u(x_0)| = 1$, $x_0 \in G \sim L$, then there is some $v \in J_L$ such that $v(x_0) = 1$. Then $1 = |u^n(x_0)v(x_0)| \le ||u^nv||$.

THEOREM 2. Let $u \in B_P^M(G)$ be such that $\sup \|u^n\|_M = C < \infty$, and let $L = \{x; |u(x)| = 1\}$. Then $\|u^n v\|_{A_p} \to 0$ for each $v \in \overline{J}_L$.

(*) If L is a set of spectral synthesis then $\|u^n v\|_{A_n} \to 0$ for each $v \in I_L$.

PROOF. Let $v \in \overline{J}_L$, $\varepsilon > 0$. Let $v_0 \in J_L$ be such that $||v - v_0|| < \varepsilon$. then

$$||u^n v|| \le ||u^n (v - v_0)|| + ||u^n v_0|| \le C\varepsilon + ||u^n v_0|| \to C\varepsilon$$

by the above lemma. If L has spectral synthesis, then $\bar{J}_L = I_L$.

REMARKS. In many cases the condition $\sup ||u^n||_M < \infty$ forces the set L to be a set of spectral synthesis:

(a) Let p=2 and G abelian. Assume that $u \in B(G) = M(\hat{G})$ is such that $\sup \|u^n\|_{B(G)} < \infty$. Then $\sup \{|u(x)|; x \in G\} \le 1$ and $L = \{x; |u(x)| = 1\}$ is a closed subset of the coset ring of G and, as such, is even a strong Ditkin set, by J. E. Gilbert [5, 6] or B. Schreiber [15, Theorem 6.2 and 14, Theorem 2.6]. A fortiori, L is a set of spectral synthesis.

Foguel's result is thus improved in the

COROLLARY. Let G be l.c. a., $\mu \in M(G)$ satisfy $\sup \|\mu^n\| < \infty$, and let $L = \{ \gamma \in \Gamma; |\hat{\mu}(\gamma)| = 1 \}$. Then $\|\mu^n * f\|_1 \to 0$ iff $f \in I_L = \{ f \in L^1(G); \hat{f} = 0 \text{ on } L \}$. (Since clearly $|\hat{f}(r)| \leq \|\mu^n * f\|_1$ if $r \in L$.)

(b) Let p=2, G arbitrary. Let B(G) be as in [2], and let $u \in B(G) \subset B_2^M(G)$ be a positive definite function such that u(e)=1. Then $\|u\|_{B(G)}=1$ and $L=\{x; |u(x)|=1\}$ is a closed (not necessarily normal) subgroup of G. Then $\|u^n\|_M=\|u^n\|_{B(G)}=1$ and L has spectral synthesis, as shown by Takesake and Tatsuma in [16]. If $u \in B(G)$ only satisfies $|u(x_0)|=\|u\|=1$ at some x_0 in G, then it can easily be shown that $\sup \|u^n\| < \infty$ and $L=\{x; |u(x)|=1\} = x_0 H$ for some closed subgroup $H \subset G$. Again L is a set of synthesis. If now $p \neq 2$, then closed subgroups $H \subset G$ are known only to have local spectral synthesis, i.e., $I_H \cap C_{00} \subset \overline{J}_H$; see Herz [8, p. 93].

(c) If $1 , G arbitrary and <math>u \in B_p^M(G)$ is such that $\sup_n ||u^n|| < \infty$, let $L = \{x; |u(x)| = 1\}$. Then $||u^n v||_{A_p} \to 0$ only for $v \in \bar{J}_L$. It seems to be a hard, open question whether L has (local) spectral synthesis in this case.²

In the following, (i) improves the Choquet-Deny theorem [1, 13].

THEOREM 3. Let $u \in B_p^M(G)$, $\lambda \in \mathbb{C}$ and $E_{\lambda} = \{ \phi \in PM_p; u \cdot \phi = \lambda \phi \}$.

- (i) dim $E_{\lambda} = n < \infty$ if and only if $u^{-1}\{\lambda\}$ is finite or void. In this case dim $E_{\lambda} = \text{card } u^{-1}\{\lambda\}$ and $E_{\lambda} = \{\sum \alpha_i \delta_{a_i}; \ a_i \in u^{-1}\{\lambda\}, \ \alpha_i \in \mathbb{C}\}$. Note that n = 0 (i.e. $E_{\lambda} = \{0\}$) iff $u^{-1}\{\lambda\} = \emptyset$.
- (ii) If G is amenable and $(E_{\lambda}, || ||_{PM_p})$ is a reflexive Banach space, then E_{λ} is finite dimensional.
- (iii) If G is discrete and contains the free group on two generators, then there exists $u \in B_2^M(G)$ for which $E_1 = \{ \phi \in PM_2; \ u \cdot \phi = \phi \}$ is isomorphic to l^2 (a fortiori is reflexive infinite dimensional).

REMARK. The reader should note that if $G = R = \hat{R}$ and p = 2, then $PM_2 = L^{\infty}(\hat{R}) = L^{\infty}(R)$ and every separable Banach space (reflexive or not) is isometric to a subspace of PM_2 .

PROOF. (i) If $v \in A_p$, $\phi \in PM_p = A_p^*$, then $\langle u \cdot \phi, v \rangle = \langle \phi, uv \rangle$. If $\phi \in E_\lambda$, $v \in A_p$, then $u \cdot (v \cdot \phi) = v \cdot (u \cdot \phi) = \lambda v \cdot \phi$. Thus E_λ is an A_p -submodule of PM_p which is w^* closed. For any $a \in G$, $u \cdot \delta_a = u(a)\delta_a$. Thus $\{\delta_x; \delta_x \in E_\lambda\} = \{\delta_x; x \in u^{-1}\{\lambda\}\}$. The δ_x 's are linearly independent; thus dim $E_\lambda \geqslant \operatorname{card} u^{-1}\{\lambda\}$. Assume now that $u^{-1}\{\lambda\} = \{a_1, \dots, a_n\}$ is finite. If $\Phi \in E_\lambda$, any $x \in \operatorname{supp} \Phi$ is such that δ_x is a w^* limit of a net $v_\alpha \cdot \Phi$ with $v_\alpha \in A_p$ (see [8, pp. 101, 118]). Hence $\delta_x \in E_\lambda$ and $x \in u^{-1}\{\lambda\} = \{a_1, \dots, a_n\}$. Thus $\operatorname{supp} \Phi \subset \{a_1, \dots, a_n\}$. A routine, well-known argument (see for example [7, proof of Theorem 1.3]) shows that $\Phi = \sum_1^n \alpha_i \delta_{a_i}$ for some $\alpha_i \in \mathbb{C}$. Thus dim $E_\lambda = \operatorname{card} u^{-1}\{\lambda\}$ and $E_\lambda = \{\sum \alpha_i \delta_{a_i}; \alpha_i \in \mathbb{C}, a_i \in u^{-1}\{\lambda\}\}$ in this case. Note that $E_\lambda = \{0\}$ iff $u^{-1}\{\lambda\} = \emptyset$ is just the Tauberian condition (T) [8, p. 101].

- (ii) If G is amenable, any norm closed A_p -submodule of PM_p which is reflexive is finite dimensional by our Theorem 1.3 in [7].
- (iii) In this case $PM_2 \subset l^2(G)$ and G contains an infinite Leinert set L, i.e., a set L such that the subspace $N = \{\phi \in PM_2, \ \phi = 0 \text{ off } L\} = l^2(L)$ (as sets) and, for some c > 0, $\|\phi\|_{l^2} \le \|\phi\|_{PM_2} \le c\|\phi\|_{l^2}$ for all $\phi \in N$ (see [9, Satz 1]). A result of Figa-Talamanca and Picardello [3] implies that $1_L \in B_M^2(G)$; thus $N = \{\phi \in PM_2; 1_L \cdot \phi = \phi\}$. If $u = 1_L$ and $\lambda = 1$ then $E_1 = \{\phi \in PM_2; 1_L \cdot \phi = \phi\} = N$ is isomorphic to l^2 .
- H. P. Rosenthal proves in [18, p. 39] that if G is abelian and $E \subset G$ closed, then A_2/I_E is reflexive iff E is finite.

We improve the result in [18] to all *amenable* groups G and all 1 . We also show that Rosenthal's result is false for <math>p = 2 and discrete G which contains some free nonabelian subgroup.

If $I \subset A_p$ is a closed subspace, A_p/I is equipped with the quotient norm.

² If the closed set L is a coset of an amenable or normal subgroup H (finite, compact, abelian or solvable are such), one still has that $\bar{J}_L = I_L$ (see [8, pp. 92, 103] for more).

Theorem 4. Let $I \subseteq A_p(G)$ be a closed ideal.

- (a) If G is amenable, then A_p/I is reflexive if and only if it is finite dimensional. (Thus, if $E \subset G$ is closed then $A_p(E) = A_p/I_E$ is reflexive iff E is finite.)
- (b) If G is discrete and contains the free group on two generators, then there is an infinite set $E \subset G$ such that $A_2(E)$ is isomorphic to l^2 (a fortiori is reflexive).
- PROOF. (a) Let $N=(A_p/I)^*$. Then $N=\{\Phi\in PM_p(G); \langle\Phi,I\rangle=0\}$ and N is a w* closed A_p -submodule of PM_p , since I is an ideal. Moreover, N is also reflexive. Since G is amenable, we can apply our Theorem 1.3 of [7] to get that N (hence A_p/I) is finite dimensional. In case $I=I_E$, $\{\delta_x\colon x\in E\}$ is a linearly independent subset of N; hence E is finite.
- (b) Let E be an infinite Leinert subset of G. Then $N=(A_2/I_E)^*$ is isomorphic as a Banach space to $l^2(E)$ (see (iii) of the above theorem). Thus $N^*=A_2/I_E$ also satisfies this condition.
- H. P. Rosenthal proves in part of Theorem 2.12 [18, p. 53]) that if G is nondiscrete and *abelian*, then any nonzero ideal of $A_2(G)$ contains a subspace isomorphic to l^1 . We improve this theorem in
- THEOREM 5. (a) Let G be any nondiscrete locally compact group. Then every closed nonzero ideal I of $A_p(G)$ contains a closed subspace isomorphic to l^1 .
- (b) If G is discrete infinite, then $A_2(G)$ contains a closed ideal I isomorphic to l^2 , a fortiori none of its closed subspaces is isomorphic to l^1 (due to M. A. Picardello [21]).
- REMARK. If G is compact abelian, $A(G) = l^1(Z)$; hence l^1 cannot be replaced by any other infinite-dimensional Banach space nonisomorphic to l^1 .
- PROOF. (a) Let $Z=\{x;\ v(x)=0\ \text{for each}\ v\in I\}$. Then $Z\neq G$ and Z is closed. Let $a\in G\sim Z$ and V be a neighborhood of e such that $aV^2\cap Z=\varnothing$. Let $V_n=V_n^{-1}$ be neighborhoods of e such that $\overline{V}_1\subset V,\ V_n^2\subset V_{n-1}$ if $n\geqslant 2,\ m(V_n)\to 0$. Let $\Psi_n=m(V_n)^{-1}1_{V_n}*1_{V_n}$. Then, as is easily seen, $\Psi_n\in A_p\cap C_{00},\ \Psi_n(e)=1$ and $\|\Psi_n\|_{A_p}\leqslant m(V_n)^{-1}\|1_{V_n}\|_p\|1_{V_n}\|_{p'}=1$ (1/p+1/p'=1). Thus $\|\Psi_n\|_{A_p}=1=\Psi_n(e)$ and $\Psi_n(x)=0$ if x is off V_n^2 .
- Let $u_n = l_{a^{-1}}\Psi_n$, where $l_au(x) = u(ax)$ for any $u \in A_p$, $a, x \in G$. Then, by definition of the A_p norm [8, p. 97], $||u_n||_{A_p} = 1 = u_n(a)$ and $u_n(x) = 0$ if x is off aV_n^2 . Thus, if $n \ge 2$, $u_n \in C_{00} \cap A_p$ and $u_n = 0$ off aV_2^2 , in particular off $a\overline{V}_1$ and $a\overline{V}_1 \cap Z = \emptyset$. Thus u_n is in the smallest ideal whose zero set is Z and, in particular, in I. We claim that no subsequence of $\{u_n\}$ is weak Cauchy. In fact, assume that u_{n_i} is a weak Cauchy subsequence. If $E = a\overline{V}$, then $u_{n_i} \in A_E^p(G) = \{v \in A_p; \text{ supp } v \subset E\}$. But $A_E^p(G)$ is weakly sequentially complete by Lemma 18 of [20]. Hence $u_{n_i} \to u$ $\sigma(A_p, PM_p)$ for some $u \in A_p^E$. In particular, for each $\mu \in M(G)$, $\int u_{n_i} \mu \to \int u \, d\mu$. By taking $\mu = \delta_a$, we get u(a) = 1. And if $x \notin aV_k^2$, then $u_{n_i}(x) = 0$ if $n_i \ge k$. Hence u(x) = 0 if $u \notin n_i = 1$. Now u(u) = 1 if $u \in n_i = 1$ of u(u) = 1 if u(u

(b) We follow the notation of Picardello [21]. By Theorem 1 of [21] every infinite subset of G contains a subset E which is a $\Lambda(4)$ set. By Proposition 2 of [21] and the remark after it, E is also a $\Lambda(2)$ set. However, by Remark 4 (after Definition 5 of [21]), $L^1(\Gamma)$ [$L^2(\Gamma)$] is isometrically isomorphic to $A_2(G)$ [l^2]. It follows that the ideal $I = \{u \in A_2(G); u = 0 \text{ off } E\}$ with $A_2(G)$ -norm is isomorphic to l^2 .

The following theorem is related to the main result of J. E. Gilbert [5] on existence of projections which commute with convolution, onto w^* closed A(G) submodules of $PM_2(G)$.

Let $S \subset B_p^M(G)$ be a norm bounded semigroup (with respect to multiplication). For example, $S = \{u^n; n \ge 1\}$, where $u \in B_p^M$ satisfies $\sup ||u^n|| < \infty$, is such a semigroup. Theorems 6.2 and 6.20 of Schreiber [15] clarify to some extent the spectrum of submodules F which can be expressed as in the next theorem.

THEOREM 6. Let $S \subset B_p^M(G)$ be a norm bounded semigroup, and $F = \{ \phi \in PM_p; u \cdot \phi = \phi \text{ for each } u \text{ in } S \}$. Then there exists a bounded linear onto projection $P: PM_p \to F$ such that $P(v \cdot \phi) = v \cdot P\phi$ for all $v \in A_p$.

PROOF. For each $\Phi \in PM_p$ let $K_{\Phi} = w^* \operatorname{cl}\{\operatorname{Co} S \cdot \phi\}$, where $S \cdot \Phi = \{u \cdot \Phi; u \in S\}$ and Co denotes convex hull. Each K_{Φ} is a w^* compact convex set which satisfies $s \cdot K_{\Phi} \subset K_{\Phi}$ for each $s \in S$. Furthermore, each operator $\psi \to s \cdot \psi$ on PM_p is w^*-w^* continuous, and the semigroup of operators S on PM_p is commutative. Hence, by the Markov-Kakutani theorem, $K_{\Phi} \cap F \neq \emptyset$ for each Φ in PM_p . We note now that F is a w^* closed A_p -submodule of PM_p , and that the w^* operator closure of $\operatorname{Co} S$ in the space $L(PM_p)$ of operators from PM_p to PM_p (denote this set by $\overline{\operatorname{Co}} S$) is a semigroup which is a w^* ot compact set; see A. T. Lau [11] just preceding Theorem 2.1. (Here w^* ot denotes the w^* operator topology on $L(PM_p)$.)

We apply now Theorem 2.1 of A. T. Lau (and the remark after its proof) [11] with $X = PM_p$ and get that there exists an operator $P \in \overline{\text{Co}}^*(S)$ which is F-stationary on $X = PM_p$, i.e., such that $P\Phi \in F$ for each Φ in PM_p . Note here that S need not consist of only isometric operators on PM_p (as stated in the introduction of [11]). Lau's proof works for any norm bounded semigroup. Let $u_\alpha \in \text{Co } S$ be such that $\langle u_\alpha \cdot \phi, v \rangle \to \langle P\phi, v \rangle$ for each $\phi \in PM_p$ and $v \in A_p$. Let $Q: PM_p \to PM_p$ be w*-w* continuous and commute with each $u \in S$, i.e., $Q(u \cdot \phi) = u \cdot Q\phi$ for each $\phi \in PM_p$. Then this holds also for each $u \in \text{Co } S$. But then $\langle u_\alpha \cdot Q\phi, v \rangle = \langle Q(u_\alpha \phi), v \rangle \to \langle Q(P\phi), v \rangle$, and the left side converges to $\langle P(Q\phi), v \rangle$ for all $v \in A_p$. Hence, P commutes with every w* continuous operator $Q: PM_p \to PM_p$ which commutes with each operator $\phi \to s \cdot \phi$ for each $s \in S$. But for any $v \in A_p$ the operator $Q_v(\phi) = v \cdot \phi$ is such an operator. It follows that $P(v \cdot \phi) = v \cdot P\Phi$ for all $v \in A_p$ and all $\Phi \in PM_p$. If now $\Phi \in F$, then $u \cdot \Phi = \Phi$ for each $u \in \text{Co } S$. Thus $P\Phi = \Phi$ since $P \in \overline{\text{Co}}^*(S)$. But $P(PM_p) \subset F$, since P is F-stationary. It follows that P is the required projection onto F.

REMARK. (a) Let \mathscr{P} denote the set of all F-stationary operators $P \in \overline{\operatorname{Co}}^*(S)$ on PM_p . Then Lau's Theorem 2.1 [11] implies that $\{(\overline{\operatorname{Co}}^*S)(\phi)\} \cap F = \{P\phi; P \in \mathscr{P}\}$ for each $\phi \in PM_p$.

(b) The main idea in the above proof is due to Anthony Lau and is also used in Theorem 2 of [17].

REFERENCES

- 1. G. Choquet and J. Deny, Sur l'équation de convolution $\mu = \mu * \sigma$, C. R. Acad. Sci. Paris **250** (1960), 799–801.
- 2. P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- 3. A. Figa-Talamanca and M. Picardello, Multiplicateurs de A(G) qui ne sont pas dans B(G), C. R. Acad. Sci. Paris Ser. A 227 (1973), 117-119.
 - 4. S. R. Foguel, On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975), 368-370.
- 5. J. E. Gilbert, On projections of $L^{\infty}(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. 19 (1969), 69–88.
 - 6. _____, On a strong form of spectral synthesis, Ark. Mat. 7 (1969), 571-575.
 - 7. E. E. Granirer, Some results on $A_p(G)$ submodules of $PM_p(G)$, Colloq. Math. (to appear).
 - 8. C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123.
 - 9. M. Leinert, Multiplication gewisser discreter Gruppen, Studia Math. 52 (1974), 149-158.
- 10. Françoise Lust, L'espace des fonctions presque-periodiques dont le spectre est contenu dans un ensemble compact denombrable a la propriété de Schur, Colloq. Math. 41 (1979), 273-284.
- 11. Anthony To-Ming Lau, Semigroups of operators on dual Banach spaces, Proc. Amer. Math. Soc. 54 (1976), 393-396.
 - 12. S. Massaheb, A note on Fourier transforms, Bull. London Math. Soc. 11 (1979).
- 13. T. Ramsey and Yitzhak Weit, Ergodic and mixing properties of measures on locally compact abelian groups, Proc. Amer. Math. Soc. 92 (1984), 519-520.
 - 14. B. M. Schreiber, On the coset ring and strong Ditkin set, Pacific J. Math. 32 (1970), 805-812.
 - 15. _____, Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970), 405-431.
 - 16. M. Takesaki and N. Tatsuma, Duality and subgroups. II, J. Funct. Anal. 11 (1972), 184-190.
- 17. A. Lau and V. Losert, W^* -closed complemented invariant subspaces of $L^{\infty}(G)$ and amenable locally compact groups (submitted).
- 18. H. P. Rosenthal, *Projections onto translation invariant subspaces of* $L^p(G)$, Mem. Amer. Math. Soc. No. 63 (1966).
- 19. _____, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.
- 20. E. E. Granirer, On some spaces of linear functionals on the algebras $A_p(G)$, for locally compact groups, Colloq. Math. (to appear).
- 21. M. A. Picardello, Lacunary sets in discrete noncommutative groups, Boll. Un. Mat. Ital. 4 (1973), 494-508.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B.C. V6T 1W5, CANADA