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WEIGHTED NORM INEQUALITIES FOR

CERTAIN INTEGRAL OPERATORS. II

H. P. HEINIG1

Abstract. Conditions on nonnegative weight functions u(x) and v(x) are given

which ensure that an inequality of the form (/ \Tf(x)\qu(x) dx)i/q sS

£"(/ \f(x)\pv{x) dx)i/p holds for 1 < q < p < oo, where T is an integral operator

of the form ¡x_x K(x, y)f(y)dy or /J° K(y,x)f(y)dy and C a constant indepen-

dent of /. Specifically a number of inequalities for well-known classical operators are

obtained. Inequalities of the above form for 1 < p < q < oo were obtained in [1].

1. Introduction. Let K(x, y) ^ 0 be defined on A = {(x, )>)eR!: y < x) and

define K and K * by

/X /-OOK(x,y)f(y)dy,        {K*f)(x) =        K(y,x)f(y) dy.
— 00 X

In [1] conditions on nonnegative weight functions u(x) and v(x) were given, which

imply norm inequalities of the form

í r00 i \l/q Í r00 p \l/p

(1.2) (/J(r/)(x) | «(*)<&)      <C(/      |/(x)| v(x)dxj

for 1 < /> < q < oo, where T is either AT or K * and C > 0 a constant independent

of/.

The purpose of this paper is to extend the results of [1] in the sense that under

similar conditions on u and v the norm inequality (1.2) holds for 1 < q < p < oo. If

q = 1, the conditions are also shown to be necessary. As in [1] the operators

considered here include several classical operators such as the Riemann-Liouville

and Weyl fractional integral operators, the Laplace transform, certain convolution

operators, as well as others. In fact the class of operators considered here is

somewhat larger than that considered in [1]. The results yield new integral inequali-

ties and, as the estimate for the fractional integral operator shows, provide examples

of translation invariant operators which map weighted L ''-spaces to weighted

¿''-spaces for q < p. Further, the discrete analogues of the integral operators are

discussed which extend the corresponding results of [1].

If K(x, y) = 1 and / is supported in (0, oo), (1.1) reduces to the Hardy operators,

which were studied by Mazja [4] and Sawyer [3].
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The plan of the paper is as follows: The next section contains the main results

(Theorems 2.1 and 2.2) and some corollaries which illustrate the theorems for

specific operators. In §3 the discrete case is briefly discussed.

Throughout, p' denotes the conjugate index of p, p ^ 1, defined by p + p' = pp'

and p' = oo if p = 1. The conjugate of q is defined in the same way. Products of

the form 0 • oo are taken to be zero and A, B, C denote constants which may be

different at different occurrences while Z denotes the set of integers.

It is a pleasure to thank Professor A. Kufner who drew my attention to Mazja's

work and Professor E. T. Sawyer for providing a variant of Mazja's proof of the

Hardy inequality.

2. Main results. The weight conditions we need are now given in the following

definitions:

Definition 2.1. Let u(x) > 0, v(x) > 0, 1 <<?</>< oo, and suppose K(x, y)

> 0 is defined in A = {(x, y) e R2: y < x}.

(a) We write (w, v) e B(K, p, q) if

/    ,00 /    ,00 \1/<7 /   ,v ,        \\/q'

B=\j ^     (l    K(x,yyu(x)dxj     (/      v(x)l-pdxj

\/r

Wv(yy-pdy

< oo,

where \/r = \/q — \/p. In case q = 1 < p, the condition takes the form

!//>'

B= If^^C K(x,y)u(x)dx]fPv(y)1-p'dyj       <

(b) We write (m, v) g B*(K, p, q) if

B*=[f /     K{x,y)qu{x)dx\     if    vixf-'dx

cc.

1A

v(yy-pdy

< oo

where 1/r = \/q - \/p. If q = 1 < p the condition is

B* a

!//>'

*^\f ^[f ^K{x,y)u{x)dx]j   v{y)l-p'dy\       < oo.

Note that in the limiting case q — p the integral in (a) takes the form

sup(fXK{x,y)pu(x)dx)     If    v(x)l~p'dx)   ?*B

and similarly the integral in (b).

We now give the main results.

< oo

Theorem 2.1. Let K be the integral operator defined by (1.1), where K(x, y) > 0 is

defined in A and is nondecreasing iny. If (u, u) g B(K, p, q), 1 < q < p < oo, then

\i//>/,0o a \V<7 /    ,oo p \L/P

(2.1)       (/!(*/)(*) !'«(*)<&)     <5c(/|/(x) !%(*)<&)    ,

w/iereC= i1/"(/>')1/*'-
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Moreover, if q = 1, then B(K, p, q) is necessary for (2.1).

Proof. Without loss of generality assume f{x) > 0 for which the right side of

(2.1) is finite.

Let q > 1 and set a(x) = v(x)1~p. Integration and an interchange of order of

integration shows that

f00   u{x)if    K(x,y)a(y)f(y)dyYdx
•'-oo W-oo '

= qf   u(x)f    if    K(x,t)a(t)f(t)dty    K(x, y)a(y)f(y) dydx
oo    \     — 00

= qf   o(y)f(y)f    u(x)K(x,y)\f_    K(x,t)a(t)f(t) dt]      dxdy

<qf   °(y)f(y)(f x *(')/(') dt)" '(J00 u(x)K(x,yydxjdy,

since t < y < x implies K(x, t) < K(x, y). Now writing

and applying Holder's inequality with indices p, p/(q - 1), p/(p - q) the last

expression is not larger than

(2.2)

if   o(y)f(y)pdy
!//>

f   \f    o(t)f(t)dt/f    o(t)dt
- oo   L    — oo

a(y)dy
(q-Vi/P

f\(f~u(x)K(x,yydx)1/g(fxO(t)dt)1/q'

Ap-q)/p

a(y)dy

The last integral of (2.2) is clearly Bq (Definition 2.1), while the second integral is by

[1, Theorem 2.1] with K = 1 and q = p not larger than

./  ,oo \<<7-D//>

(ACy-y j{y)f{y)pdy)

where A = (p'yx/p'pi/p and

C=SUp(/°°(.f    °{t) dt\" o{y) dy\   "if    6(t)
aeB \   a

dt
i/p'

= (p-iyi/psup /    a(r)i/H      - /     *(/)<//
i/>

«(/»-ir1*.

i/y
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Therefore,

'f°   «(*)(£    K{x,y)o{y)f{y)dy)jqdx

*Bql«(p')l"(f"   o(y)f(y)pdy)1/

I/o

which is equivalent to (2.1).

If q = 1, an interchange of order of integration and Holder's inequality shows

that

f      u(x)[f     K(x,y)f(y)dy)dx
■'-oo \J- oo /

= f  f(y)v(y)1/p-1/pr K(x,y)u(x)dxdy
•'-oo Jy

<(fxf(y)Pv(y)dy)1/Plf^v(y)1-p'(ÇK(x,y)u(x)dxydy\   "

I    ,00 \l/P

= B[f J(y)"v(y)dyj     ,

which is (2.1).

Conversely, if (2.1) holds with q = 1, define / by

i- </ r°° \l/0>-D

/00-«>00   '(/    *(x, ;/)«(*)<&) ,       y^R.

But since, after interchanging the order of integration, (2.1) with q = 1 takes the

form

/OO ,00 /    ,00 \ I//*

/(>>)/    Ä-(x,^)ii(x)dx^<C /     f(y)Pv(y)dy)     ,
— oo ' Jy v—oo /

we obtain

,l + l/(/7-l)

1//'

/      "i.^"']/    *U.v)«(*)<&) dy

or

This completes the proof of the theorem.

Note that the proof of the theorem in the case q = 1 does not require that

K(x, y) is nondecreasing in y.
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Theorem 2.2. Let K* be defined by (1.1), where K(x, y) > 0 is defined in A and is

nonincreasing in x. If (u, v) G B*(K, p,q)A ^ q < p < oo, then

I   r<*> ,1 \l/q I   /•<* p \1//p

(2.3) (/      \(K*f)(x)\u(x)dx)      <ß*C(/      \f(x)\ü(x)dxj

where C = ql/q(p')1/q'. Moreover, if q = 1 then B*(K, p,q) is necessary for (2.3).

The proof of this result is almost identical to that of Theorem 2.1, only now we

apply [1, Theorem 2.2], and in the case q = 1 one defines / by

f(y) = v(yf~p[f ^K(y,x)u(x)dx)j

to show that (2.3) implies B*(K, p, 1). The details are omitted.

Corollary 2.1.   Suppose k(x) > 0  is nonincreasing and  1 < q < p < oo.   If

\/r = \/q - l/pand

I    ,00      \l    ,00 \l/q I    -y \l/q'

(2.4) B=\f        if    k(x-yyu(x)dx\     if     v(x)l~p dx

■v{x)    p dx\      <oo,

l/r

(with the obvious modification if q = 1), then

(2.5)

/OO I     /-A"u{x)\f     k(x-y)f(y)dy dx

i/V

I/p

W-oc

A similar result holds for the dual operator.

If k = 1 and / is supported on (0, oo) one obtains the Hardy operator, and

Corollary 2.1 yields the generalizations of Hardy's inequality given by Mazja [4] and

independently by Sawyer [5] where even the case 0 < q < p, p > \ was considered.

Moreover, in this case (2.5) implies (2.4) and, similarly, for the dual operator.

If k(x) = xa~1/T(a), 0 < a < 1, and / is supposed on (0, oo), one obtains the

Riemann-Liouville fractional integral operator

(u)(x) = -^-f(x-ty-lf(t)

Corollary 2.1 then shows that

(2.6) f°   (f°° {x - y)(a-l)qu(x) dxY" ̂ f v(x)l-p' dx

dt.

1/9'

v{y)   p dy < oo

implies

\Vi Wp
(2.7) (jT \(IJ)(x)\Qu(x)dx]j      < c(jf° \f{x)\Pv{x)dX)

l^q<p<co.A similar result holds for the Weyl fractional integral operator.
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Note that unlike the case 1 < p < q < oo considered in [1], the condition on the

weights in the case q < p is more restrictive. In particular, if u and v are both power

weights (2.6) cannot hold. However, for large classes of weights one does have

weighted estimates. We single out the weights u(x) — x" and v(x) = ex.

Corollary 2.2. Ifl<q<p<<x> and (1 - <x)q - 2 + q/p < a < (1 - a)q -

1 < 0, then (2.7) holds with u(x) = x" andv(x) = ex.

Proof. We must show that the integral of (2.6) is finite. Since

Ç ex(\-p') ¿x < \/(p' - 1)
■'0

and

f (x - yy,-1)qxadx = y<a-Vq+a + lB((a - \)q + 1, (l - a)q - 1 - a),
y

where B is the Beta function and (a - l)q + 1 > 0, (1 - a)q - I - a > 0, we

obtain on substituting that the left side of (2.6) is dominated by

/*°°      r[{a-l)q+a+\\/qe-y(p'-l) ¿y_

•'o

But this integral is finite if r[(a + Y)q + a + \\/q + 1 > 0. Hence (2.6) holds if

(a - Y)q + a + 1 > -q/r  and 0 > (1 - a)q - 1 > a.  Since  \/r = \/q - l/p,

(2.7) holds if 0 > (1 - a)q - 1 > a > (1 - a)q - 2 + q/p.

Observe also that

f (x-yy~1\f(y)\dy>h*-lf    \f(y)\dy,      0 < h < x,
J0 Jx-h

so that (MJ)(x) < T(a)(Ia\f\)(x) where

(MJ){x)=   sup  h-'f    \f(y)\dy

is the left fractional maximal function. Therefore, the norm inequality for Ia implies

the inequality for Ma.

Corollary 2.3. Suppose 1 < q < p < oo, \/r = \/q - \/p.

(a) // 0 < y < 1 and

\l/l I   ,v .      .       \l/<?/_; (r™*) v.. '<->'-'*)v{y)       dy < oo,

then

q        \!/<?

dx
(,00 fX

/      u{x)\      f(y)dy
— oo I J yx

(b) lfy>0 and

iX     (Í    e^q^-^u{x)dx\/q(r v{x)l~p'dx\

*íCÍf      \f(x)\Pv(x)dx\
\l/p

l-p-
v(y)       dy < oo,

then

f     u(x)\F(x)\gdx\     ^cif     \f(x)fv(x)dx

where F( x ) = e y7x°° e ~ Vf( t)dt.

1/4 i/>
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Proof, (a) Define AT on A by K(x, y) = 1 if yx < y, and zero otherwise. Clearly

K is nonincreasing in y and the result follows from Theorem 2.1.

(b) Let K(x, y) = e~y(y~x\ y > x, then K is defined in A and nonincreasing in

the first variable and (1.1) shows that F(x) = (K*f)(x). Therefore, the result

follows from Theorem 2.2.

Unweighted L''-estimates of F(x) were obtained by Stepanov (cf. [3, p. 26]).

The last application involves the Laplace transform L defined by

,00

(Lf)(x)=        e~x'f{t)dt,        x>
Ja

0.

If (*/)(*) - fof(y)dy and (K*f)(x) = fxxe'v/xf(y)dy, then, for/> 0,

e-l(Kf)(l/x)+(K*f)(l/x) < (Lf)(l/x) < (Kf)(l/x)+(K*f)(l/x),

so that

1/4 \i/p

(2.8) (jf    u(x)[(Lf)(x)]qdx]      <c(jf    [f(x)]pv(x)dx)

if and only if

if u(l/x)(Kf)(x)"x-2dx\        and    if u{\/x)(K*f){x)qx-2dx\
\l/4

are bounded by a multiple of (/0°° f(x)pv(x)dx)1/p. Now applying Theorems 2.1

and 2.2 we obtain at once the following result (cf. [1, Theorem 2.3] where the case

1 < p < q < oo was considered):

Theorem 2.3. //

/; (r-w-nr •<*>-'dx
1/9'

v{y)   p dy < oo

and

,oo     /   ,oo \l/,q I   rx i     „'

f      if    e-xvqu(x)dx\     if    v{x)l~p dx
1/9'

a-?'
v(y)    p dy < oo,

1 < q < p < oo, \/r = \/q - l/p, then (2.8) holds.

Hl<q<p<cc and q/p < a < 1, then as a special case of Theorem 2.3 one

obtains

,!/9 l//>

(f ,-|WX*Jf*) " < elf |(i + ,=)/(,) f-*L_) '.
\Jo I \yo 1 + X   I

To see this, let u(x) = x~" and v(x) = (1 + x2)p~1 in the above integrals. Since

(1 — p')(p — 1) = —1 and — a + 1 > 0, the first integral is dominated by

/0°° jf.(«-«'/»(i + y2yi ¿y But this integral is finite if -1 < (a - \)r/q < 1, that is

1 - q/r < a < 1 + q/r but \/r = \/q — l/p, so in particular if q/p < a < 1.
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Similarly, the second integral in Theorem 2.3 is dominated by

,00 _,/   ,00 \r/9

/     (1+^2)      /     e-xyqx-"dx\     dy

= cify(a-1)r/q(l +y2)~1dy\if e-'radt
r/q

t = xyq.

As we have seen if q/p < a < 1 the first integral is finite and clearly so is the second

integral. The result now follows from Theorem 2.3.

3. The discrete case. We now consider the discrete analogue of Theorems 2.1 and

2.2.

Theorem 3.1. Let {K(m,n)} be a nonnegative double sequence defined in D =

{(m, n) G Z X Z; n < m} such that K(m, n) is nondecreasing in n. If 1 < q < p <

oo and {Un}, {Vn} are nonnegative sequences such that

(3.1)    B
m = - oc

LK(n,myu„
1/4

E   K1-"'
n= — oo

1/9'

j/W

iA

< oo,

\/r = \/q — l/p, then for all sequences {an}

(3.2) I    K(n,k)a(
k = — oo

<7\ 1/?

BC\    Z    \a/K
i/p

\ n= — oo k= — oo / W? = — oo

where C = q1/q(p')l/q'.

Moreover, if q = 1, (3.2) implies (3.1).

Proof. Without loss of generality assume an > 0. Let an = V^~p'\ then using the

elementary inequality

in \q n Ik \9-l

I    K(n,k)akaA    < q    £    ÄT(«,fc)a^J    £   *(«,/)a/fl/
\A= —oo / k= — oc \/=—oo /

we obtain as in the proof of Theorem 2.1 via an interchange of summation Holder's

inequality and [1, Theorem 4.1]

E    £/J     I    K{n,k)okak\    ̂ BC\     I    a„<
/T = — oo \ k= — Oí

But this is equivalent to (3.2).

The case q = 1 is as in Theorem 2.1 and we omit the details.

Theorem 3.2. Let {K(m,n)} be a nonnegative double sequence defined in D =

{(m, w)gZxZ;h<w) such that K(m, n) is nonincreasing in m. If 1 < q < p <

oo and {£/„}, {Vn} nonnegative sequences satisfying

\/r

(3.3)    B* s
m = — oo

E    K{n,m)qU\ E  K-"'
1/9 1/9'T

T/l-/,'1 <  00,
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\/r = \/q — l/p, then for all sequences {an}

(3-4) E  un
\n-

ZK(k,n)ak
k = n

"\
1   'I

<B*C\    E    V„\aK

i/p

where C = q1/q(p')1/q - Moreover, if q = 1, (3.4) implies (3.2).

The proof of Theorem 3.2 is similar to that of Theorem 3.1 and therefore omitted.

We note that these results generalize certain inequalities of Leindler [2].
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