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A SMALL BOUNDARY FOR H°° ON

A STRICTLY PSEUDOCONVEX DOMAIN

ANTONELLA CUPILLARI

Abstract. Let n > 2 and D c c C" be a strictly pseudoconvex domain with C*

boundary for k > 2. There is a closed nowhere dense subset of the maximal ideal

space of ¿"(bD) which defines a closed boundary for //°°(D).

Let D c c C" be a strictly pseudoconvex domain with Ck boundary k > 2,

denoted by b£>. By taking nontangential limits, each /e HX(D) defines almost

everywhere on bZ), with respect to the induced Lebesgue measure m on bZ), a

function/* G L°°(bD) [10]. Let M(U°(bD)) and M(HX(D)) be the maximal ideal

spaces of Lx(bD) and HX(D), respectively. A closed boundary for HX(D) is a

closed subset /? of M(HX(D)) such that ||/|| = sup{|<i>(/)| for <j> G ß} for all

/ G H°°(D). It is possible to define a continuous map w: M(L°°(bD)) -» M(H°°(D))

byw(</>)(/) = (/>(/*) for <i> g Af(L°°(bZ)))and/G //°°(Z)).

The problem to find information about the Shilov boundary, i.e., the smallest

closed boundary, S(H°°(D)) of HX(D) has been solved in the case of the unit disc

because the map w is a homeomorphism from M(L°°(bA)) onto S(//°°(A)) [6].

Range has shown that the corresponding result is false, for n > 2, in the case of the

polydisc [8] and the unit ball.

The main theorem in this paper shows that if D is a strictly pseudoconvex domain,

it is indeed possible to construct a closed nowhere dense subset of M(L°°(bZ>))

which defines a closed boundary for H^iD).

The first step involves a local parametrization of the boundary of the domain by

boundaries of planar regions, in analogy to the construction in [8]. This parametriza-

tion is more explicit than the one by analytic discs introduced by Bishop [2] and it

seems more appropriate for the applications considered. In order to study the

properties of the map ir we need to use inner functions, whose existence follows from

the result of Aleksandrov [1] and its generalization to strictly pseudoconvex domains

by Low [7].

The transition from the local situation to the general one will be done by using the

localization principle for the maximal ideal space of HX(D) obtained by Range [9];

the result is stated as Theorem 5. In the present paper we discuss the proof of the

main results. The proofs of several technical lemmas are omitted. Full details are

given in [3].
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Let D c c C" be a strictly pseudoconvex domain with Ck boundary (k > 2,

n > 2). If q g bD, without loss of generality, after a suitable holomorphic change of

coordinates, it is possible to assume that q = (0,..., 0) and that in a small enough

neighborhood of the origin, called B, D has defining function

y(zv...,z„) = -x-i + i>{x2,...,xn,yl,...,yn)

n n n

= -*i + a,y2 +   E «ykyl. +   E ftyXy^i +   E C/Jytt + °(3)"
y-2 y-2 y-2

For pebD,   5  with /> = («! + *&,... ,«„ + //?„) = (/?,,.. .,p„)  and   r g N* =

{1,2,3,...}, define

Ci> = { X G 5lAi = Pj îorJ = 1, ■ • •,« - 1 and X„ = x„ + ;>„

such that a, * ^(a2, ...,a„_1, x„, ßu--,ß„-i, yn)} c b¿)^

V(Àe fil\, = /!/•for^' = 1.-••," - 1 and\„ = jc„ + iy„

such that a, > ip(«2,,..,a„_-t,x„,ß1,...,ßn_1, y„)} C Z),

A/>.- = { X G filX7 = Pj {oTJ = 1.-• •." - 1 andX„ = x„ + i>„

such that öl > *(«2»--->«^i>*,i>&.--->A,-i.JV) + V"} c V

In the local representation, D is convex. A is the intersection of it with a

(2n — 2)-dimensional plane, so A^ is itself convex. In particular, it is a connected

domain in a complex plane. Then its boundary Cp is a simple closed curve.

Lemma 1. Consider the singularity set S = {z g bD n Z?|z g Cpfor some p g bZ>

nfi /or w/hcA f/iere extffó a po/n/ p ^ Cp such that (3 y/Sx „)(/>) = 0 a«i/

(3y/3^n)(/3) = 0}. 77,e« w(S) = 0.

Proof. One shows that 5 has measure zero locally by applying the Implicit

Function Theorem to prove that S is stratified by real submanifolds of bD n B of

dimension less than 2« - 1. (To do so the strict convexity of the domain is needed.)

Define

51 = |zG5|Y(z) = 0; |^(z) = 0; |^-(z) = oJ    and    S2 = S - Sv

Since delJ(y,dy/dxn,dy/dyn)(0,...,0) =t 0 by continuity and by the Implicit

Function Theorem, it follows that in a small enough neighborhood of the origin Sx is

a real submanifold of dimension 2n — 3. Then w^,) = 0. Let p g S2. We can

assume, without loss of generality that (dy/dxn)(p) =£ 0. Then in a neighborhood

V(p) of the point p, by the Implicit Function Theorem, it is possible to write

xn = h(xv... ,*„_i, yitt.. ,y„) with h g C1. By definition of S2, there exists at least

a q g S¡ n Cp. It is possible to apply again the Implicit Function Theorem to get

that, in a neighborhood of q, B(q, e(q)), Sl can be described by (x,, xn, yn) =

kq(x2,...,xn_l, y1,...,y„_l), where kq is at least of class C1. The points of

Sl n Z?(g, e(<?)) identify a subset r of 52 in a neighborhood [^(p) of p with

Uq{p)<z V{p) where

r9= { z g í/^/?)!*, = /cf(x2,...,>'„_1);x„ = &(*!,...,*„_!, jj.>>„)}.
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r has measure zero. By a compactness argument, it is possible to prove that there

exists an open neighborhood of p, V, such that

vns2cz    u   r.
./ = !

Then S2 has local measure zero; som(52) = 0.

Parametrization of a neighborhood of a nonsingular point. As a consequence of

Lemma 1, the set (bD D B) - S is dense and open in bD n B. Fix p0 G (bD n B)

— S, with /?0 = (xj° + (y",... ,x° + /y°). Then there exists a neighborhood of p0,

fij(/70), contained in (bD n B) - S. Up g Z?,(/?0), for all f e Cp one has that either

(3y/3jcn)(f ) # 0 or (Sy/S^XO ^ 0. Then C is a differentiable curve in the plane

{z g C"\zj = pj for y < «} and it can be parametrized by using the arc length. The

choice of the initial point p g Cp, for the parametrization of Cp, can be made to

depend on p0 in a differentiable way, using again the Implicit Function Theorem in a

neighborhood of p0. Let sp be the parametrization of Cp by arc length, normalized so

that the total length of C is one and so that ^(0) = p. Define then the function Sp:

[0,1] -» bD n B given by Sp(t) = z = (/?,,_/>„_,, z„(t)) where zn(t) is the point

having normalized distance t from p on Cp. It is possible to extend this correspon-

dence to all real numbers and points in Cp by setting z„(t ± 1) = zn(t) for t G R.

Define then /Í : S1 -* Cp as ßp(e") = (pl,...,pn_l, zn(t/2ir)). ßp is one-to-one and

onto.

For a suitable e0 = e(p0), it is possible to assume that the open neighborhood of

p0 in which the construction can be carried out is of the kind

U(p0) = { z G bD\\xj - xf\ < e0; \yj - yf\ < e0 fory < n; \\zn - z°|| < e0}

with U(p0) c (bD n B) - S. Then if z g U(p0), it follows that C. can be parame-

trized by S,, which depends differentiably on z, as done before. Set

¡o.j -"[«y" £0< *y + e0]     and    ^o.y = [>;° - £o. JJf° + eo],

^o.y = { f G C|x g Z()^andj g J0 y),

ôo= n^xs^in/o.xdxs1.
y < n \ y < n '

Consider 4>0: ̂ o ~* bZ) given by

í>o(21,...,z„_1,e") = (^,...,z„_1,z„(//27r)).

If B0 = $o(öo)' define %: Q0 r* fi0 given by

♦d^i.i,-i.«*)-*o(«i.'-,Vf.»i')-

Lemma 2. $0 « a diffeomorphism from the interior of Q0 onto fi0 — <b0(bQ0).

Proof. It follows from the construction that the jacobian of $0 is different from

zero.

Since (bZ> n B) - S is an open dense set in bD n 5, it is possible to cover it with

a countable collection of sets obtained by repeating the construction of S20.
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Local construction of a lower semicontinuous function corresponding to an HX(D)

function. Let /g Hx(D) and p0 g (bZ) n B) — S. Then p0 has a parametrizable

neighborhood ß0. Consider W = Uxeimn AA where the interior ß0 is taken with

respect to bZ>. For À g ß0 define 6y(X) = supA;k \f(z)\. Let

(1)/* be the nontangential limit of/taken on AA. By Fatou's Theorem this limit

exists a.e. on bAA = CA with respect to arc length on bAA,

(2)for*eAT*,g,(A)=supA)J/(0|.

Lemma 3. g„ is a continuous function for any sufficiently large v.

Lemma 4. Gf is lower semicontinuous and supa>Gj(X) = ||/||//*(M/).

Proof. It follows from Lemma 3 and from the following equalities

G/(A) = sup|/(z)|=esssup|/*(ni
c

=  lim sup|/(z)|= sup g„(X).

The local result can be stated as follows:

Theorem 1. There exists a nowhere dense subset of the maximal ideal space of

LX(Q.0) which defines a closed boundary for HX(W) by using the canonical map tt:

M(L°°(Ü0)) -* M(H°°(W)) induced by the inclusion map between HCC(W) and

L°°(Q0).

In order to prove it, one needs some additional properties of W and /:

Proposition 1. W is an open set and ß0 = bW n bD.

Proof. The proof involves a straightforward verification.

Let /* be the nontangential limit of / taken in D. It exists m a.e. by Fatou's

Theorem.

Theorem 2. ///e W°(D), then \\f\\H^W) = \\f*\\L~(ao).

Proof. Seta = ||/|| „-><„,, and b = ||/*|L=c(ûo).

(i) a < b. Suppose not. Then \f(z0)\ > b for some z() g W. Because /is continu-

ous, this inequality holds in a neighborhood V(z0) of the point. Let U(z0) = V(z0)

Pi W. It is open, nonempty, and in it \f(l)\ > b. Consider the set F= {X g

Intß0|AAn í/(z0) + 0}. It is possible to show that it is open in ß0. Then if

w0 g F, it follows that Cw c F, and one has that F 3 ^Q(A) where A is an open set

in Q0 with A = Al X S1. f* exists m a.e. on UA6FCA. Then by Fubini's Theorem it

exists on CA a.e. with respect to the measure of it as a curve in a plane for all X

except those in a set of 2« — 2 measure zero. Then there is a set Q c A with

w2(n-i)(ô) = 0 such that/* and/* exists a.e. with respect to the m, meausre on S1,

at F = %((Al X Q) X S1). For X G F, f* = /* and they exist a.e. on CA = bAA.

Since AA n U(z0) # 0, there exists a fA g AA such that

|/(£\)l > b >   SUP ll/*ll^(bá,) > ||/*||/^//,bAx)
XeF

for all X g F. This contradicts the maximum modulus principle.
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The construction of Gf can be done, keeping all the above properties, for any

f^Hx(W).

Proof of Theorem 1. ß0 has been parametrized using O0: Q0 -* ß0. Let {//}/ii

be an enumeration of points with rational coordinates in YlJ<nKl 0 with r, = (x) +

iy},.. .,x"~l + iy"^1). Let k, m be positive integers and define

(1)

lli .ill
^-¡¿¿«X'Vj-yi <

km 2l+l ' V} '     km 2I+1   'l J<n

with / = 1,..., oo,

(2)ik,m = ur^nnm,

(3)Ek,m = %(h,mXS1).

Ekm is open and dense in ß0 and m(Ek m) < c/k2m2. Moreover, if w g Ekm, it

follows that

Clv = «D0{(w1,...,w„_1,e")|iGR}c£,

Define

Uk.m- { * e M(L*>(p0))\4,(xBkJ = l]

This set is closed and open in [5] and m(Uk m) = (Ek ) < c(km)~2, where m is the

induced measure on ß0 c bD and m is the regular Borel measure on Af(L°°(ß0))

such that ¡f dm = jfdm for all /g L°°(ß0) [5]. The next step is to prove that

t(í/a J c M(Hx(W)) is a boundary for HX(W) where t is defined by t(v¿/)(/) =

!/-(/*) for all/g H°°(W). r(Uk J is closed because it is compact. For/G HX(W)

define G^as before with G¡: ß0 -» R.

Assume that 1 > supT(t/ } |/| = esssup£ |/*| and consider the function g =

\f*\°%. Then g g L»(ß0, m2lI_1) and g < îm2H a.e. on Z, m X S1. The set

Km" { (*.'¿) e 4- ^^'(«oi'i.v/)) does not exist}

has measure zero in /fc     X S1. Then g < 1 m2ll_1 a.e. on (Z¿. m X S1) — Fk m. This

means that for almost all (zx,.. ■,z„_1) g Ik m, one has

esssupg(z,,...,z„_1,é>") < 1

s1

that gives Gf(w) < 1 m a.e. on Ek m - <&Q(Fk m), i.e. Gf(w) < 1 w a.e. on Ekm.

Since Gy is lower semicontinuous and Ek m is open and dense in ß0, it follows that

GAw) < 1 for all w g ß0. Therefore, by Lemma 4, it follows that ||/||//»((f) < 1-

This proves that r(Uk m) is a boundary for HX(W).

Construction of the boundary with the required properties. The sequence {Uk m} is a

nested sequence because Ek m 3 Ek + lm for all m. Using a compactness argument,

the set ß = f)f=lUk m is nonempty. Since t(/3) = DT(Uk m) it follows that T(ß) is a

closed boundary for HX(W). Moreover, m(ß) = \imk^00m(Uk m) = 0. This implies

that ß is nowhere dense.

Theorem 3. The map r. M(LX (ß0)) -» M(HX(W)) is not one-to-one.

Proof. The argument given in [8] can be carried over to the situation considered

here.
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Theorem 4. t( M(L°°(ß0))) w strictly larger than the Shilov boundary for HX(W).

Proof. Fix any index k and construct the set E = Ekm. It is open, dense in ß0,

and m(E) < c(km)~2. Then there exists a set F c ß0 — E which is closed and of

positive measure. Consider /: ß0 -» R to be equal to 1 on F and equal to 2 on

ß0 — F. It is lower semicontinuous and/g L°°(ß0). It can be trivially extended to

an/g Lx(bD), which is still positive. Then by [7] there exists an/g Hx(D) such

that/* =f m a.e. on bD. Then f/W G Z/°°(HO and (//JF)* =/™ a.e. on ß0. In

particular, \(f/W)\ = 2 on the Shilov boundary for HX(W), but |(//W)| # 2 on

T(M(L°°(ß0))).

Final result.

Theorem 5. Lei « > 2 and D c c C" be a strictly pseudoconvex domain with Ck

boundary for k > 2. Then

(1) There is a closed nowhere dense subset ß of M(Lx(bD)) with measure m(ß) = 0

such that -n(ß) C M(HX(D)) is a closed boundary for HX(D) where it is the map

defined in the introduction.

(2) <n(M(Lx(bD))) is strictly larger than the Shilov boundary for HX(D).

(3) The map -n: M(Lx(bD)) -^ M(HX(D)) is not one-to-one.

Proof. Cover bD with a collection of open neighborhoods of its points biholo-

morphically equivalent to ones of the origin in which bD can be represented as

n n n

Xi = al(p)y2 + E aj(p)\zj\   + E bJ(p)xJyl + E cJ(p)yJyl + 0(2,).
y-2 7=2 y-2

Since bD is compact it is possible to select a finite number of them so that

bD = UjijF/. In each one of them consider the singularity sets Sa\ They have

measure zero in bD. So if 2 = U/£,5(/), it follows that m(2) = 0. Then the set

bD — 2 is open and dense in bD. Since V¡ — 2 = UJ°=1ß/ r, it follows that

po     oo oc

bZ)-2=U U'O/.,- Uo«,
1=1 r=l m=\

where the ßm's are a renumbering of the ß, /s. For each one of them repeat the

construction shown in Theorem 1 to obtain the sets Ek m and consider Ek =

Ux=lEk m. Then Ek is open and dense in bD - 2 (i.e. in bD) and M(Ek) =$ dk~2,

where d is a positive constant. Consider

Uk= {t^M(Lx(bD))\t(xEt)-l}.

ir(Uk) is closed in M(HX(D)) and it is a closed boundary for HX(D). This follows

from the properties of the sets Ek¡ m. Since Ek + l m c Ek m, it follows that Ek + l c Ek

and hence Uk + l C L^ for all k. By compactness, then ß = C\f=lUk is nonempty with

m(ß) = 0; that is, ß is nowhere dense in M(Lx(bD)). Consider ir(ß). It is a

boundary for H°°(D) because intersection of boundaries, indeed tr(ß) = n£Liff(£4).

This proves part (1) of the theorem.

The proof of the second statement is similar to the one for Theorem 4.
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To prove the last part, let us recall that if À g bD, the fibers over X are defined by

Mx(Lx(bD)) = {^GM(Z.-(bZ)))|^(z7) = A7fory = l,...,«}

and

MX(HX(D))= {iP^M(Hx(D))\^(zJ) = \JfoTj = l,...,n}

where z¡ is they'th coordinate map. 77 and t preserve fibers. By Theorem 3, the map

t: M(Lx(üm)) -* M(Hx(Wm)) is not one-to-one. Therefore, there exists a X g ßm

such that t: Mx(Lx(ttJ) -> MX(HX(WJ) is not one-to-one. Wm = D U U for

some open neighborhood U of À in C". Then there are natural homeomorphisms

between the fibers MX(HX(D)) and Mx(Hx(Wm)); MX(LX(QJ) and MA(L=°(bZ>))

[9]. Let hl and h2 be these homeomorphisms. Since the diagram

Mx(Lx(bD))      -      MX(HX(D))

T Äi T*2

MX(L»(QJ)      ^>      A/x(tf»(Wj)

commutes, it follows that 77 is not one-to-one. This proves the theorem.

References

1. Aleksandrov, private communication with Rudin.

2. E. Bishop, Differentiable manifolds in complex Euclidean space. Duke Math. J. 32 (1965), 1-21.

3. A. Cupillari, Inner functions and boundaries for Hx on strictly pseudoconvex domains, Ph.D. Thesis,

State Univ. of New York at Albany, 1984.

4. T. W. Gamelin, Localization of the Corona problem, Pacific J. Math. 34 (1970), 73-81.

5. _, Uniform algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.

6. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1969.

7. E. Low, Inner functions and boundary values in HX(Q,) and A(Q) in smoothly bounded pseudoconvex

domains, Ph.D. Thesis, Princeton Univ., June 1983.

8. R. M. Range, A small boundary for Hx on the polydisc, Proc. Amer. Math. Soc. 32 (1972), 253-255.

9.   _,   Localization principle in  several variables.   Bounded holomorphic functions  on strictly

pseudoconvex domains, Ph.D. Thesis, Univ. of California, Los Angeles, 1971.

10. E. M. Stein, Boundary behaviour of holomorphic functions of several complex variables, Princeton

Univ. Press, Princeton, N.J., 1972.

Division of Science, Engineering and Technology, Pennsylvania State University, Erie,

Pennsylvania 16563


