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ON THE SPECTRA OF C„ CONTRACTIONS

H. BERCOVICI1 AND L. KÉRCHY

Abstract. We give a complete characterization of the closed subsets of the complex

plane that can serve as spectra of completely nonunitary contractions of class Cu.

Let Jfbe a complex Hilbert space, and denote by £^(Jff) the algebra of all

(continuous, linear) operators acting onJf. An operator T g Sí'(Jíf) is a contraction

if \\T\\ < 1. A contraction T g J¡f( Jf ) is said to be a C,,-contraction if

lim„_0O||7,"x|| # 0 and lim„_00||r*"x|| ¥= 0 for every nonzero vector x g Jíf. Fur-

ther, we recall that a contraction T is said to be completely nonunitary if it has no

proper reducing subspace on which it acts as a unitary operator.

Our main result contains, in particular, a description of all spectra a(T), with T a

completely nonunitary C„-contraction. Before stating our results we need a few

additional preliminaries.

We recall that the operators T g <£(Jf ) and T'Gif(jf") are said to be

quasisimilar if there exist operators X^SC(Jf, 3#") and Ye¿?(J?", Jf) with

dense ranges and trivial kernels satisfying the relations T'X = XT and TY = YT'. It

is known (cf. [10, Proposition II.3.5]) that each completely nonunitary Cu-contrac-

tion T is quasisimilar to an absolutely continuous unitary operator U; U is

determined by T up to unitary equivalence and there is in fact a canonical choice for

U. Namely, T is quasisimilar to the residual part RT of the minimal unitary dilation

of T. We also have a(RT) c a(T) (cf. [10, Proposition II.6.2]).

We will denote D = {X g C: |A| < 1}, T = {A g C: |A| = 1}, D = D U T, and

m will stand for the normalized Lebesgue measure on T (i.e., m(T) = 1). A closed

subset 2 c T will be called regular if 2 coincides with the closed support of the

measure Xs dm, where, of course, /„Xs dm = m(u n 2) for every Borel subset <o of

T. If 2 is an arbitrary Borel subset of T, we denote by 2 ~ the closed support of the

measure x?dm. Note that 2= is regular and, in general, the measures Xs.dm and

X2- dm are different. The reason for introducing regular closed sets is that the

spectrum of an absolutely continuous unitary operator is regular.

To be more specific, denote by L2 the space L2(T, dm) and, if 2 C T is a Borel set

with w(2) > 0, denote by L2(2) the space of those (classes of) functions/ g L2 that

vanish almost everywhere on T\2. The unitary operator M2 G J?(Z.2(2)) is

defined by

(M2/)(n = £/tt),       fGT,/GL2(2).
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It is well known (cf. [2]) that every cyclic, absolutely continuous, unitary operator is

unitarily equivalent to an operator of the form M2. Furthermore, we have a(M^) =

2= but, as noted above, AZ2 ¥= M2- in general. (Let, e.g., 2 be the complement of a

Cantor-type set, and 0 < w(2) < 1. In this case it may happen that 2" = T.)

We can now state our main results. A subset a' of a closed set a c C is called a

clopen set if both a' and a \ a' are closed.

(1) Theorem. Assume that T is a completely nonunitary Cu-contraction. Then

m(a' D T) > 0 for every nonempty clopen part a' of a(T). More precisely, we have

m(a' n a(RT)) > 0 for every nonempty clopen part a' ofa(T).

We will use the sign " = " to indicate the unitary equivalence of operators.

(2) Theorem. Assume that a c D~ is a closed set,?, a o Ci T is a regular closed set,

20 c 2 is a Borel set, ?= = 2, and m (a' n 2) > 0 for every nonempty clopen part a'

of a. Then there exists a completely nonunitary C'^-contraction T with the following

properties: (i) Thas a cyclic vector; (ii) a(T) = a; (iii) a(RT) = 2; and(iv) RT = M2 .

Observe that Theorem 2 is more than a converse to Theorem 1. We see, in

particular, that the spectrum of a completely nonunitary C,,-contraction is also the

spectrum of a certain cyclic C,,-contraction.

The question of determining the spectra of C,,-contractions was first posed by

Sz.-Nagy and Foia§ in [9]; they also gave an example of a C,,-contraction T of

infinite multiplicity with a(T) = D" (cf. [10, Chapter VI.4.2]). Later Eckstein gave in

[3] an example of a C„-contraction T of infinite multiplicity with a(T) = {À g C:

\ < |A| < 1}. The first examples of cyclic C,,-contractions T with a(T) = D" were

given in [1] and, while the present work was in progress, K. Takahashi found

Cn-contractions T such that o(T) = h(D)~, where h g Hx, \\h\\œ «: 1, and \h(eir)\

= 1 on a set of positive Lebesgue measure.

We begin now with the proof of our results.

Proof of Theorem 1. Assume that T g ¿¡?(3f), let a' be a clopen part of a(T),

and set a" = a(T)\a. By the Riesz-Dunford functional calculus (cf. [8, §148]) there

exist invariant subspaces Jf' and 3?" for T such that 3«" n Jf " = {0}, 3%" + Jf"

= J4f, a(T\Jif') = a', and o(T\3V") = a". The operator T is then similar to (T\Jf')

© (T\J(?") and hence T' = T\J?" is also a C,,-contraction. As noted above, T' is

quasisimilar to the absolutely continuous unitary operator RT,, and o(RT,) c a'.

Furthermore, a' =£ 0 implies that o(RT<) ¥= 0 and we conclude that

m(a' n T) > m(o(RT,)) > 0.

The last statement of the theorem follows from the fact that o(RT) c a(RT).

Indeed, RT is quasisimilar to T and hence to Z\r|jr © RT[je»>. Thus RT and

Rr © Rj^' are unitarily equivalent (cf. [10, Proposition II.3.4]). The theorem

follows.

For the proof of Theorem 2 we need two lemmas. The first ingredient in our

construction of C,,-contractions is provided by functional models.
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(3) Lemma. Let a c T be a Borel set with m(a) > 0, and K a positive number. There

exists a completely nonunitary Cu-contraction such that

(i) T has a cyclic vector;

(ii) o(T) = a= , RT = Ma; and

(iii)\\T-i\\>K.

Proof. Choose a positive constant y < 1 and find an outer function 8 g Hx such

that

|0(f)| = 1    for almost every f g T\ a,

= y    for almost every fE«.

Of course, such a function is essentially uniquely determined, and it is given by

Define now T as the completely nonunitary contraction whose characteristic func-

tion coincides wtih 8. Then T is a Cn-contraction because 8 is outer (cf. [10,

Proposition VI.3.5]), ris similar to RT by [6, Lemma 4], and RT = Ma (cf. the proof

of [10, Theorem VI.6.1]). Thus a(T) = a(MJ = a= , and (ii) holds. Now, (i) follows

because T is similar to RT, and RT - Ma has a cyclic vector. Finally, it follows from

the definition of characteristic functions [10, §VI.l] that \\T~l\\ > ^(O)!"1 =

exp(-m(a)log y). Thus condition (iii) is satisfied if y is chosen to be sufficiently

small. (We remark that, in fact, ||7""1|[ = |0(O)|"\ but this equality is not needed

here.)

The following result contains a basic idea that helps us produce C,,-contractions

with contorted spectra. Since the proof of Lemma 3 actually produces similarities,

one could replace "quasisimilarity" by "similarity" in the following proof.

(4) Lemma. Assume that we are given a simply connected domain £2 c D bounded by

a simple, closed, rectifiable Jordan curve T, an arc I c T n T, a Borel set a a I with

m(a) > 0, a point jtt0 g ñ, and a positive number K. Then there exists a completely

nonunitary C^-contraction T with the following properties:

(i) T has a cyclic vector;

(ii) o(T) = a=, RT ^ Ma;

(iii) ||(/i0Z - T)-l\\>K;and

(iv)\\(pl - T)~l\\ < l/dist(/z, i2)/orju g C\Q".

Proof. First we note that there exists a homeomorphism u: D~-> fi" such that

h|D is holomorphic and w(0) = ¡u(). Indeed, the restriction w|D can be constructed

by the Riemann mapping theorem, while the extendability of u to D ~ follows from a

theorem of Carathéodory (cf. [5, Theorem II.4]) because F is a simple Jordan curve.

Moreover, a subset a c T has Lebesgue measure zero if and only if u(a) has

arclength measure zero (cf. [5, X.l, Theorem 2]) and this clearly implies that the set
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ß = u l(a) c T has positive Lebesgue measure, and

(5) j9--ii-l(«-)cT.

Observe that there exists a function v g Hx such that

(6) n0-u(\) = u(Q)-u(\) = \v(\),       A g D.

Apply now Lemma 3 to produce a completely nonunitary C,,-operator 7\ such that

7\ has a cyclic vector, a (7,) = ß= , RT — Mß, and

(7) Irr1! > K\\v\\x.

Finally we define the required operator T by

T=u(Tx),

where the symbol «(7,) is defined via the Sz.-Nagy-Foias functional calculus; T is

completely nonunitary by [10, Theorem III.2.1]. The equality

o(T) = u(o(T1)) = u(ß=) = a =

follows from (5) via [4, Corollary 3.2]. Next, since 7, is quasisimilar to Mß, it follows

that T = w(7\) is quasisimilar to u(Mß). An application of [10, Theorem III.2.3]

shows that u(Mß) acts as follows:

(u{Mß)f)(t) = u(0/tt),        S e T,/g L2(ß),

and it is easy to see that this operator is unitarily equivalent to Ma. An explicit

unitary equivalence U: L2(a) -* L2(ß) is provided by the formula

(t/g)(n=ka)i1/2g(«(0), f^,
= 0, £gT\/?,

and this makes sense for g G L2(a) because of the behavior of u with respect to sets

of measure zero (cf. [5, §X.l, Theorem 1]).

We see now that T is quasisimilar to the unitary operator u(Mß) — Ma, and this

finishes the proof of (ii). That T is a Cu-contraction and has a cyclic vector follows

from the facts that Ma is unitary and has a cyclic vector.

Observe now that (6) implies ¡u07 — T = m(0)Z — u(Tx) = Txv(Tx), from which we

deduce

u{Tx){toI - IT1 - T{\

and hence, by (7),

KWU^IIrf1! <|K7i)«|(fi<>/- r)"1! <MI.|(mo/- r)"1].

The inequality (iii) follows at once. As for (iv), Theorem III.2.1 of [10] implies that

(lil-T)-1 = vll{Tl),       |iíQ-,

where ^(A) = l/(ju - u(X)), A g D, whence

|(JLtZ-r)'1||<||i;Joo = l/dist(M,fi-).

The lemma is proved.
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Proof of Theorem 2. Choose a sequence {A„: n > 1} dense in a, and let {¡in:

n ^ 1} be a sequence in which every A, is repeated infinitely many times, i > 1. The

idea is to construct a sequence of pairwise disjoint Borel sets {an: n > 1}, an c 20,

and a sequence of completely nonunitary C,,-contractions {Tn: n > 1} with the

following properties:

(8) RT^Ma     ïorn>\;

(9) ö(r„) = a,7    for«>l;

(10) \{iinI-Tny1\>n    if (M„7 - T,,)"1 exists, n>\;

and

(11) ||(/xZ- rj_1| < l/[dist(ju,a) - 1/«]    iîdist(n,a)> l/n,n^l.

Once we have constructed these sequences we set a0 = 20\U^L,a„, and define a

completely nonunitary C,,-contraction T0 such that a(T0) c 50, and RT = Aftt(;

note that r0 acts on a trivial space if w(a0) = 0. Finally, define T = ®x=QTn, and

note that ris a completely nonunitary C,,-contraction, and

00 oo

RT=   ®RT=   0MOn = M2().
n-0 n-0

Thus, as before, T has a cyclic vector and a(RT) = 2. In order to check (ii) we

observe that for fixed i> 1 we have ||(A,Z — T) :|| > n for infinitely many values of

n, and hence A, G a(T). By density we conclude that a c a(T). Furthermore, if

(tío then u G 0(7^) = a° , and (11) shows that the sequence {||(ju7 - r„)_1||:

n > 1} is bounded, consequently fi G o(T). We conclude that a(r) = a and hence 7"

satisfies all the requirements of the theorem.

We turn now to the construction of an and Tn. For n> lwe set

Gn= {A g C:dist(A,a) < 1/«}

and denote by G'n the connected component of Gn that contains /x„. Also choose for

each n a point ¡u'„ eG^nD such that

(12) |M, - n'„\ < 1/2«.

Of course, we may choose ¡in = fi'„ if \p„\ < 1. The set G'n n a is clearly nonempty

(because ¡xn g G„') and clopen in a. We conclude that m(G'n O 2) > 0 and, since

20 = 2,

m(G„' n 20) > 0.

Thus we can find inductively Borel subsets ßn c G'n n 20 such that

0 < m(Ä,) < \m{ßn_x),       n>2.

It is clear that the set an = /5„\UJ,_,ySn + A. has positive measure. Indeed,

OC 00

m(a„) > m(ß„) -   £ m(ßn + k) > m(ß„) - m(ßn) E 3'* > 0,        n > 1.
* = 1 A- - 1
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We can further assume that each an is contained in a single arc of G'n n T. The sets

{an: n Ss 1} are pairwise disjoint and m(an) > 0, n > 1. We concentrate now on the

construction of T„ for n ^ 1.

Assume that an is contained in the arc In = [e": tx < t < t2} c G'n Pi T with

endpoints f, = e"1 and f2 = e"2, where ;, < t2 < i, + 2w. A moment's thought

shows that the set G'n n D is connected. The easiest way to see this is to note that, if

a point A with |A| > 1 belongs to G„, then the point A/|A| belongs to the same

component of Gn. Thus we can find a rectifiable, simple, Jordan curve

r„c(c„'nD)u{f„f2}

joining f, and £2, and such that the simply connected region fi„ with boundary

In U r„ is entirely contained in G'n C\ D, and ¡x'n g Q,n. We can now apply Lemma 4

with the domain Q„, the point ¡i'n G £2„, the Borel set an, and K = 3n. We obtain an

operator Tn satisfying (8), (9),

(13) |(K,/ - THyl\ > 3n,

and

(14) ||(M7-7;)-1||<l/dist(^,í2j,       i»eC\0;.

To conclude the proof we must show that (10) and (11) are also verified. Observe

that for ju G C \ a we have

dist(/x, a) < dist(/x, Gn) + \/n

< dist(/i, G'n) + \/n < dist(ju, fln) + \/n

because Í2„ c G'n c G„. Thus dist(/i, a) > \/n implies that ju g C\ß^ and the

inequality (11) holds. To prove (10) we note that (13) implies the existence of a unit

vector x„, in the space on which Tn acts, such that ||(ju'n7 - T)xn\\ < 1/2«. Now, by

(12),

\Kfij - t)x„\\ < |(M;z - t)x„\\ + i/i, - fi;| < i/«

and this in turn implies (10). The proof is complete.

We conclude with a few remarks about the spectra of Cn -contractions that are not

completely nonunitary. The results above would not change if the words "completely

nonunitary contractions" are replaced by "contractions whose unitary parts are

absolutely continuous." In fact, every contraction with an absolutely continuous

unitary part is similar to some completely nonunitary contraction. Now, adding

(orthogonally) a singular unitary operator to a given contraction allows us to

increase the spectrum of that contraction by an arbitrary closed subset of T. The

resulting characterization of the spectra of arbitrary C„-contractions is rather

cumbersome, and the reader will have no difficulty in formulating it.
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