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A HÖRMANDER TYPE CRITERION

FOR QUASI-RADIAL FOURIER MULTIPLIERS

HENRY DAPPA AND HAJO LUERS

Abstract. We state practicable sufficient conditions on quasi-radial functions

;>!°p(|) = »'(p(£)) to be Fourier multipliers in LP(R"). Here m is a bounded

function and p is a homogeneous distance function. The conditions on m are given in

terms of localized Bessel potentials and those on p reflect and generalize basic

properties of the norm in R". The results are related to those of Madych [7] and

Fabes and Rivière [3] and improve their results (specialized to quasi-radial multi-

pliers). The proof utilizes Madych's approach [7] and interpolation properties of

localized Bessel potential spaces [2].

0. A function m g Lx(R") is called a Fourier multiplier in LP(R"), m g Mp(R"),

if the relation (Tf) (£) = m(£)/ (£) defines a continuous endomorphism on LP(R")

where/ denotes the Fourier transform of /g LP n L2(R"); the multiplier norm

||m|| M equals the operator norm of T. For the general definition of localized Bessel

potential spaces S(q,y) we refer to Connett and Schwartz [2]. In case y > l/q,

1 < q < oo, these spaces can be identified with the spaces of functions of weak

bounded variation, as was shown by Gasper and Trebels [5]. If y g N, 1 <<?< oo,

then WBV^ y = {m g L°°(0, oo): m, m',.. .,m(yl) are locally absolutely continuous

and ||m||„,7 = IM^ + supR>0(j2R \fm^(t)\"dt/t)l/q < œ if q < œ or \\m\\^y

= \\m\\x + esssup,>0|f1Wy)(OI < oo if q = oo}. A function p is called a (^homo-

geneous distance function if p is continuous on R", positive on R"0 = R"\ {0} and

satisfies p(tpx) = tp(x) for t > 0 and x g R". Here P is a fixed real (n X n)-matrix

with eigenvalues having positive real parts.

Examples are given in [1, 10 and 14]; further examples are:
n

p,(x) = x\ - ûn2{xl/x2)x{x2 + x\,        p2(x) =  £ \xj\ '        (a, > 0),

7=1

pAx) = W + -*!) ~+kl   tal   /(*i +W)-
Throughout the paper c and C denote generic constants, N the least integer greater

than n/2, and t+ = max{0, t}.

Theorem 1. Let p g C^Rq) be a homogeneous distance function, 1 < p < oo, and

m G WBV^ y, where 1 < q < oo and y > n\\/p - 1/2| + (\/q - \\/p - 1/2|)+.

Then m ° p G M_(R") and\\m ° p\\M  <, C\\m\\q y with C independent of m.

Received by the editors September 6. 1983.

1980 Mathematics Subject Classification. Primary 42B15, 42B25.

Key words and phrases. Fourier multipliers, Hörmander criterion.

'1985 American Mathematical Society

0002-9939/85 $1.00 + $.25 per page

419



420 HENRY DAPPA AND HAJO LUERS

Peral and Torchinsky [9] have shown: iiO < p < oo,l < q < oo and m g WBV^ y

for some integer y > v\l/p - 1/2| + \/q, then m ° p is a multiplier in HP(R"). Here

p g C°°(Ro) is the P-homogeneous distance function determined by \p(x)~px\ = 1

if x # 0. The matrix P has to satisfy ta\x\ < |rpx| < tß\x\ for some 1 < a < /? and

all í > 1, x e R". v is the trace of P.

Obviously Theorem 1 is an improvement of Peral and Torchinsky's result in case

1 < p < oo as the following examples show:

(1 - p(0) + G Mp(Rn) if X > (n - l)\l/p - 1/2| and 1 < p < oo.

This  multiplier  may  be  of  interest  for  the  generalized   Riesz

summation of inverse Fourier integrals. Analogous results were

(i) obtained by Löfström [6] and Peetre [8] for a class of distance

functions p satisfying p g C°°(Ro) and p(tx) = tap(x) for some

a > 0 and all t > 0, x g R". See also the discussion of the above

multiplier in the radial case in Fefferman [4].

<?"*(i)(l + p(0)'ß e Mp(R") if ß > n\\/p - 1/2| and 1 < p < oo.

(ii) This result extends that of Sjöstrand [11] from the radial to the

quasi-radial case.

For the proof of Theorem 1 the approach via Littlewood-Paley functions is used.

We employ the same Littlewood-Paley functions as Madych [7]:

/   />* 2 \1/2

Si(/)(*)=(/o    \K,*K,*f(x)\  dt/tj     ,

g2(f)(x) = (jf° / r'(i -rirríx-^íD'V^/í^)!2^^

where Kt = F~l[<p(t /■(£))], <P G C°°(R) is a nonnegative bump function supported

in [1, 2], r G C^R'Ö) is a fixed ZJ-homogeneous distance function (see [14, p. 1255]),

F~l denotes the inverse Fourier transformation, P* the transpose of P, v = trace(P),

/G L2(R")andy > n/2.

To be precise we point out that the matrix P is more general than that of Madych

[7] which is assumed to be "good" or at least "reasonable", but this does not affect

the L ''-behaviour of the g-functions.

The approach via Littlewood-Paley functions first occurs in Stein [12] and is

generalized by Madych [7] to obtain an anisotropic version (Proposition 4) of the

Hörmander multiplier criterion [13]. Madych's assumption on the multiplier m can

be expressed by

sup   f I \x\yF-l[cp(r(Ç))m(tPt)](x)\  dx < B2 < oo,        y > n/2.

The following lemma presents a practicable sufficient condition for this assumption

to be satisfied in the quasi-radial case.

i/i.
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Lemma 1. Let m g C°°(0, oo) be compactly supported in (0, oo) and let p be as in

Theorem 1. Then for every y > n/2

f | \xC F->[<p(r(i))m(tp(i))}(x)\2 dx < c||m||2.
2

y

with c independent of m and t > 0.

Madych's method now yields

Lemma 2. Let m, p, and y be as in Lemma 1. Then \\m ° p\\M < c||w||2 y for every

1 < p < oo, where c is independent of m.

A combination of Lemma 2 with interpolation and embedding arguments of

Connett and Schwartz [2] on localized Bessel potentials will lead to Theorem 1.

1.

Proof of Lemma 1. (a) The case y = k g N. We omit the region of integration if

it is the whole R". a g N" is a multi-index, |ct| = a, + • • • + a„, x" = x°¡ ■ ■ • x"„",

D" = (d/dx)°, (d/dx)° = (ö/dx,)"' ■■■(d/dxn)a». By Plancherel's theorem and

simple estimates,

(1.1) Ik= f \\x\kF-i[m(Rp(-))<p(r(-))](x)\2 dx

< c

|„| = A
?./

2

¡i)'[m(RpU)Mr(i))]

2

^)°[«i(M€))]   «•

It is an immediate consequence of p and r being P-homogeneous distance functions

that there are c,, c2 > 0 such that c,/-(£) ^ p(£) < c2r(£). Hence, the domain of

integration is contained in {£: c, < p(£) < 2c2} and we may estimate the deriva-

tives and arbitrary powers of p from above and below.

Applying the chain rule and converting to Riemann-Stieltjes integrals we get

h^ctf \(RpU))'m^(RpU))\2pUy"dè
/_0 "Vi«P<i>«2<-2

It

2'2R \t'mU)(t)\2 dt/t < c\\m\\l,k
/=oy<.«

since we can cover [clR,2c2R] with a fixed number of intervals [2>,2J + 1] and

WBV2/c WBV2 Afor/> k.

(b) The case y = k + 8,0 < S < I. This case can be treated by the argument of [2]

on pp. 70-71. Hence, we only point out the important steps. Let S(q, a) be defined

as a K ""-localization of the Bessel potential space Lq, and S0(q, a) as a W*-localiza-

tion. For the definitions we refer to [2, §§1.3 and 2.4].
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Let the space J^=^(S0(2, k), S0(2, k + 1)) of functions on S = {z g C: 0 ^

Rez < 1} be defined as in [2, §1.4]. In order to smooth functions in S0(q, a) take

■q G C°°(0, oo) with suppTj = [1/2,2], 7j ̂  0 and /0°° i)(t)dt/t = 1, set t]e(t):=

ET)(tc) for e > 0 and define for any/e# with f(6) = m

/f(z,/):=   C Ve(t/s)f(z,s)ds/s,

f(z, s) being the value of f(z) g S0(2, k) at s. Clearly

/•OO

mt(t)=        iit(t/s)m{s)ds/s=ff(8,t).
Jo

We apply the Phragmen-Lindelöf principle to the function z -> G,fe with

GJc(x)=\x\k + zf ^(r(i))fXz,RpU))e^dt

Observe that analogously to (a)

|2

GJÊ < f  (1 +\x\k + 1)f q>(r(i))/.(*. Rp(t))e"*.didx

c\\fAz)hk + ̂ c(l+e)2\\f(z)\\
2

2,k-

For the last step we used the integration by parts and \\mr\\2 , < C||w||2 ,. Hence, for

fixed e > 0 the function z -» G,fe is Z/-valued and uniformly bounded for z g S.

Since / is continuous on 5 and analytic in the interior of S, one can show by

estimates similar to those above that z -» G,fe is continuous and analytic with

respect to the Z/-norm.

On the boundary for/ = 0,1

\\GJ + iyfl2 < 4IÂJ + 'y)\\i.k+J < 4f(j + iy)\\2.k+J.

Hence,

l|Gz/E||2 *£ c max  max \\f(j + iy)\\2.k+j = c||/||^,
7 = 0,1    veR

c independent of e. By Lebesgue's Dominated Convergence Theorem and Fatou's

Lemma

2

dxf\\x\yf<p(r(0)m(Rp(e))elxidii

liminf [ \\x\Y f <p(rtt))mt(Rp{è))e'x(dè
e—* oo

2

dx

liminf ||GS/J|2 < c||/||2^.
e—* oo

The interpolation property then gives the desired result since the norm of m as an

element of the complex interpolation space

[S0(2,k),S0(2,k+l)]s = S0(2,y)

is equal to inf{||/ ||^: /e#, f(8) = m).
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Proof of Theorem 1. The restriction in Lemma 1 on m to be infinitely

differentiable and compactly supported away from the origin can be removed by

density arguments as in [13, 6.2.1 and 2, p. 25]. On account of Lemma 2 the bilinear

operator B defined by (B(m, /))"(£) = m(p(£))fU) maps S(q„ y,) © L"' -+ L"'

continuously for qx = 2, y, = n/2 + e, p1 = 1 + e, any small 0 < e < 1/2. Taking

into account the embeddings S(q, a) c S(2, a) if 2 ^ q < oo and

S(q, a + 1/2) c S(2, a) if 1 < q < 2 [2, Theorem 5.3], we deduce that B is also

continuous for q2 = 1/e, y2 = y,, p2 = px and q3 = 1 + e, y3 = (n + l)/2 + e,

py = pv On the other hand S(q, a) c Z,°°(0, oo) if 1 < q < oo and a > \/q [2,

Theorem 5.4] and M2(R") = LX(R"), hence B is continuous for q4 = 1/e, y4 = 2e,

p4 = 2 and q5 = 1 + e, y5 = l,p5 = 2. The range R in the (l/q, y, l//?)-diagram for

which B is continuous thus contains the five points (l/q¡, y, l/p¡), ' = !»• • •>^» an<^

by duality also the three points (l/q¡, Y„ 1 — l/p,-), ' = 1,2,3. By Connett and

Schwartz [2, Theorem 5.5] R is convex and since we may take e > 0 arbitrarily small

R contains the interior of the convex hull H of the eight points (1/2, n/2,1),

(1/2, n/2,0), (0, «/2,1), (0, n/2,0), (!,(« + 1)/2,1), (1,(« + l)/2,0), (0,0,1/2),
(1,1,1/2). Note S(q, ß) c S(q, a) for ß > a, thus for every (\/q, a, l/p) g H also

the line {(\/q, ß,\/p): ß > a] belongs to R. The region so obtained can be

described by the two pairs of inequalities y > (n — l)\l/p — 1/2| + l/q if l/q >

|1//? - 1/2| or y > /i|l//7 - 1/2| if l/q < |l//> - 1/2|, 1 < p, q < oo. Finally, in

the context of WBV-spaces, we can admit q = 1 and q = oo without leaving Ä since

WBVi.«+f c wBvi+E.a = S(l.+ «,a) if a > 1, e > 0 and WBV^ a c WBV,, a =

S(q, a) if 1 < q < oo, a > 1/g. (See [5, Theorems 3 and 4].) This completes the

proof of the theorem.

2. The above method of proof can be employed to give the following variant of

Theorem 1 :

Theorem 2. Let p be a P-homogeneous distance function with P = diag(a,,... ,a„).

For eachj = l,...,n and a g {0,1}" with a; = 0 let Xj -* D"p(x) be locally absolutely

continuous for almost all xj = (xv... ,X»_1, XJ+1,... ,xn) G R""1. For a1,... ,ak G

{0, 1}" such that a1 + • • • + ak e {0, 1}" let rTj^ZTp g Lsx<x(W0) for some s with

2 < s < oo. Now, if I < p < ce, l<g<oo a«J m G WBV^ y for some

y > n\l/p - l/2|+(l/<7-(l - l/s)\l/p - 1/2|) + ,

then m° p G M (R") and\\m ° p\\M  < c||w||      vv/f/z c independent ofm.

This result cannot be obtained from the general results of Madych [7], Fabes and

Rivière [3], and Peral and Torchinsky [9]. It allows one to deal with nonsmooth

distance functions p, e.g.

PÁx) =\xl\ + (xl2 +\x2\)     ,

3

Ps(x) = L \Xj\"J + 5Sgn(jc,)|*,| '|x2| 2,        arßk > \, /?,/«, + ß2/a2 = 1.

Application of Theorem 2 to p = p2,...,p5 yields

(i)(l - p(|))ÍG Mp(R")UX > (n - 1 + l/s)\l/p - l/2|andl < p < oo.
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In the different cases it suffices if s > 2 satisfies l/s > max(l - or) for p2, s < 5

for p3, s = oo for p4, and l/s > max(l - a.) as well as l/s > max(l - ßk) for p5.

(ii) eipU)(l + p(e))~ß g Mp(R") iï ß > n\l/p - 1/2| and 1 < p < oo.

The proof of Theorem 2 is analogous to that of Theorem 1, therefore we only

indicate the modifications: Instead of g2 one considers

\ 1/2

g3(f)(x) fQ    /Hn(l + i1.rJ/|)       \K,*f(y)[dydt/t
-2k

,2

where k > 1/2. This g-function has the same L ''-behaviour as the g2-function.

Instead of Lemma 1 one proves

/ n(t+w)| f-i[ï(i-(î)m</>(î))](*) 2
dx < cllmllö.

if y = /iK, 1/2 < k < 1, l/q = 1/2 — k/s. This can be done in the same manner as

in the proof of Lemma 1 but interpolating between y = 0 and y = n. In case y = n

one has to apply Holder's inequality to (1.1) to separate the terms depending on m

from those containing p and its partial derivatives.
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