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WEAK SPECTRAL THEORY
M. W. WONG

ABSTRACT. We initiate the weak spectrum of a linear operator on L7 spaces,
1 < p < oo. The weak spectrum of a pseudo-differential operator with symbol in
Sae . where —oo < m < o0 and 0 < p < 1, is investigated.

1. Introduction. For m € (-o0, c0) and p € [0, 1], we define S,", to be the set of all
functions o in C*®(R") such that, for each multi-index a, (D% )(£) = O(|¢|™ ) as
|§| = 0. Let o € §.7,. Then we define the pseudo-differential operator T,, initially
on % (the Schwartz space), by

(Tig)(x) = @m) " [ e “a(£)(¢) dé

for all p € &. Here, " denotes the Fourier transformation. Obviously 7, maps #into
&. It can be shown (see Proposition 2.1 in Wong [5]) that, for 1 < p < o0, T:
& — Zis closable in L?(R"). We denote the closure by T, ,. Detailed information
about the spectrum 2(T,,) of T, can be found in Wong [3, 4, 5]. The corresponding
results for partial differential operators have been gathered in Schechter [2].

2. The weak spectrum. Let 4 be a closed linear operator defined on L”(R"). Then
a complex number A is said to be in the weak resolvent set p,.(A) of 4 if the range
R(A — A)of A — Ais dense in L?(R") and there is a constant C > 0 such that

m{x e R |p(x)|> a} < {C(4 = M)l /a}”
for all « > 0 and ¢ in the domain 2(A) of 4. Here, m{ - - - } denotes the Lebesgue
measure of { - -+ } and|| || the L” norm. As usual, the weak spectrum X (A4) of 4 is
defined to be C — p,(A4). Obviously, = ,(A4) € 2(A). That £,(A4) can be a proper
subset of Z( 4) will be shown in §5.

3.0n2,(T,,),1 < p < co. We first show that 2,(T,,) is not empty.

THEOREM 3.1. If o(§) is not bounded away from a complex number X for all £ € R",
then A € 2 (T,,).

Prookr. For simplicity, we suppose that A = 0. Let { £, } be a sequence of elements
of R" such that o(§,) — 0 as k — oo. Let {¢,} be a sequence of positive numbers.
Let § € CZ(R") be such that 8(£) = 0 for |£| > 1 and (27) "/*[g0(£) dé = 1. Let
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Y € & be such that = . Fork = 1,2,..., define

(3.1) ‘Pk(x)=32/p4’(£kx)eigk”‘
If 0 € p,(T,,), then there is a constant C > 0 such that

P
(32) m{x € R": o (x)|> o} < {CI Tl /2

foralla > 0 and k = 1, 2,.... Choosing @ = %/ and using (3.1), inequality (3.2)
becomes

(3.3) m{x e R [W(ex)| > ) < g"0(IT.l").

Since ¢(0) = 27) "/?[g8(§) d¢ = 1, it follows that there exists a § > 0 such that
[¢(x)|] > 3 whenever |x| < 8. Therefore

m{x e R |y(ex)| > 1} > 7(8/¢,)"
fork =1, 2,.... Hence, by (3.3),
(3.4) 78" < O(| Tueul”)

for kK = 1, 2,.... But as has been shown in the proof of Theorem 3.1 in Wong [5], we
can choose the ¢,’s going to zero so fast that ||T,¢,|| = 0 as k = oo. Thus (3.4) is
impossible.

A useful consequence of Theorem 3.1 is

COROLLARY 3.2. 2 (T, ) contains the set {0(§): § € R"}.
4. Multipliers of weak type (p, p), 1 < p < oo. Let m be a bounded measurable
function on R”. For any ¢ € &, we define T, by

(T,9)(x) = @m) ™ [ e m(£)(¢) dé.
Suppose that there is a constant C > 0 such that

P
m{x € R |(T,9)(x)| > a} < {Clel/a}
for all « > 0 and ¢ € %. Then we call T,, a multiplier of weak type ( p, p).
The connection between weak type multipliers and weak spectra is provided by

THEOREM 4.1. A complex number X is in the weak resolvent set p,(T,,) of T,, if and
only if 1 /(6(§) — N) is a multiplier of weak type ( p, p).

PROOF. We first prove necessity. Again for simplicity, let A = 0. By Theorem 3.1,
o(£) is bounded away from 0 for all £ € R”. For any f € &, define u by éi(§) =

f(&)/0(£). Then u € L and T,u = f. Since 0 € pw(T,,), it follows that there is a
constant C > 0 such that

m{x € R": [u(x)| > o} < {Clfll/a)’

for all a > 0 and fe&. Hence 1/0(§) is a multiplier of weak type (p, p).
Conversely, if 1/6(£) is a multiplier of weak type ( p, p), then there is a constant
C > 0 such that

(4.1) m{x e R" p(x)| > o} < {C|T0l/a}”
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for all « > 0 and ¢ € . Since o(£) is bounded away from O for all £ € R”, it
follows that < R(T,,). This proves that R(T,,) is dense in L”(R"). Consequently,
0 € p,(T,,) if we can show that (4.1) is valid for all o € 2(T,,).

LEMMA 4.2. Inequality (4.1) is valid for all € 2(T,,).

PrOOF. For any ¢ € 9(T,,), let {p, } be a sequence of functions in C3°(R") such
that ¢, > ¢ and T,9, — T, in L”(R") as k — oo. Pick a subsequence of {g,},
again denoted by { ¢, }, such that ¢, — ¢ a.e. on R". For any a > 0, we set

E(a) = {x € R" [p(x)| > a

and

E(a) = {x € R" |p,(x)| > a}

fork =1, 2,.... Since ¢ € L?(R"), it follows that m( E(a)) < oo. So for any € > 0,
by Egoroff’s Theorem, we can find a measurable set 4, € R” such that m(A4,) <e¢
and ¢, (x) = @(x) uniformly for all x € E(a) — A,. Hence, there exists a positive
integer K such that |,(x)| > a whenever k > K. For such k’s, E(a) — A, C E (),
and using (4.1) and letting k — oo, we get

14
m(E(a)) — &< {C”Top(p”/a}
for every a > 0. Since ¢ is an arbitrary positive number, the proof is complete.
5. An example. We begin with an observation.

LEMMA 5.1. For any p such that 1 < p < oo, a sufficient condition for 2 (T, ,) =
2(T,,) is that 2(T,,) = {o(§): £ € R"}.

Lemma 5.1 follows immediately from Corollary 3.2 and the fact that 2 (7;,) €
3(T,,).

Let 7 be the function defined by 7(£) = ¢/ /(1 + |£|¢), where 0 < a < 1 and
0 < ¢ < na/2. Then, defining ¢ by 0(§) = 1/7(§), it is clear that o € S{_, . As has
been proved in Wong [3, 4], 2(T,,) = {o(§): £ € R"} if p is any number such that
1<p<oandl/p—1/2|<c/na, and 2(T,,) = Cif 1/p — 1/2| > ¢/na. The
following result tells us that we know exactly what 2 (T, ) isif 1 < p < oco.

THEOREM 5.2. Z (T,,) = 2(T,,),1 < p < oo.

PROOF. In view of Lemma 5.1, we need only consider [1/p — 1/2| > ¢/na. We
first suppose that 1/p > 1/2 + ¢/na. If A € 2(T,,) and A & 2 (T,,), then by
Theorem 4.1, 1 /(0(£) — A) is a multiplier of weak types (2,2) and ( p, p). Hence, by
the Marcinkiewicz interpolation theorem, 1/(o(£) — A) is an L9 multiplier for any ¢
such that1/2 + ¢/na < 1/q < 1/p. Thus, by Theorem 3.3 in Wong [3], A € p(T,,).
But Theorem 3.1 in Wong [4] says that the spectrum of T, is either C or {o(§):
¢ € R"}. Hence, 2(T,,) = {a(£): £ € R"}. This is a contradiction. The proof for the
case when 1/p < 1/2 — ¢/na is similar.

THEOREM 5.3. 2 (T,,) = {0o(£):£ € R"}.
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PROOF. By Theorems 3.1 and 4.1, we need only show that if A € C is such that
o(§) # Aforall § € R, 1/(0(§) — A) is a multiplier of weak type (1, 1). But an easy
computation shows that 1/(o(£§) — A) € S§_, ,, and hence it follows from Theorem
2" in Fefferman [1] that 1 /(o(£) — A) is indeed a multiplier of weak type (1, 1).
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