WEAK SPECTRAL THEORY

M. W. WONG

ABSTRACT. We initiate the weak spectrum of a linear operator on L^{ρ} spaces, $1 \leq \rho < \infty$. The weak spectrum of a pseudo-differential operator with symbol in $S_{\alpha\alpha}^{m}$, where $-\infty < m < \infty$ and $0 \leq \rho \leq 1$, is investigated.

1. Introduction. For $m \in (-\infty, \infty)$ and $\rho \in [0, 1]$, we define $S_{\rho,0}^m$ to be the set of all functions σ in $C^{\infty}(\mathbb{R}^n)$ such that, for each multi-index α , $(D^{\alpha}\sigma)(\xi) = O(|\xi|^{m-\rho|\alpha|})$ as $|\xi| \to \infty$. Let $\sigma \in S_{\rho,0}^m$. Then we define the pseudo-differential operator T_{σ} , initially on \mathscr{S} (the Schwartz space), by

$$(T_{\sigma}\varphi)(x) = (2\pi)^{-n/2} \int_{\mathbf{R}^n} e^{ix\cdot\xi} \sigma(\xi) \hat{\varphi}(\xi) d\xi$$

for all $\varphi \in \mathscr{S}$. Here, $\hat{}$ denotes the Fourier transformation. Obviously T_{σ} maps \mathscr{S} into \mathscr{S} . It can be shown (see Proposition 2.1 in Wong [5]) that, for $1 \leq p \leq \infty$, T_{σ} : $\mathscr{S} \to \mathscr{S}$ is closable in $L^{p}(\mathbb{R}^{n})$. We denote the closure by $T_{\sigma p}$. Detailed information about the spectrum $\Sigma(T_{\sigma p})$ of $T_{\sigma p}$ can be found in Wong [3, 4, 5]. The corresponding results for partial differential operators have been gathered in Schechter [2].

2. The weak spectrum. Let A be a closed linear operator defined on $L^{p}(\mathbb{R}^{n})$. Then a complex number λ is said to be in the weak resolvent set $\rho_{w}(A)$ of A if the range $R(A - \lambda)$ of $A - \lambda$ is dense in $L^{p}(\mathbb{R}^{n})$ and there is a constant C > 0 such that

$$m\{x \in \mathbf{R}^n: |\varphi(x)| > \alpha\} \leq \{C \| (A - \lambda)\varphi \| / \alpha\}^{n}$$

for all $\alpha > 0$ and φ in the domain $\mathscr{D}(A)$ of A. Here, $m\{\cdots\}$ denotes the Lebesgue measure of $\{\cdots\}$ and $\parallel \parallel$ the L^p norm. As usual, the weak spectrum $\Sigma_w(A)$ of A is defined to be $\mathbb{C} - \rho_w(A)$. Obviously, $\Sigma_w(A) \subseteq \Sigma(A)$. That $\Sigma_w(A)$ can be a proper subset of $\Sigma(A)$ will be shown in §5.

3. On $\Sigma_{w}(T_{\sigma p})$, $1 \leq p < \infty$. We first show that $\Sigma_{w}(T_{\sigma p})$ is not empty.

THEOREM 3.1. If $\sigma(\xi)$ is not bounded away from a complex number λ for all $\xi \in \mathbf{R}^n$, then $\lambda \in \Sigma_w(T_{\sigma p})$.

PROOF. For simplicity, we suppose that $\lambda = 0$. Let $\{\xi_k\}$ be a sequence of elements of \mathbb{R}^n such that $\sigma(\xi_k) \to 0$ as $k \to \infty$. Let $\{\varepsilon_k\}$ be a sequence of positive numbers. Let $\theta \in C_0^{\infty}(\mathbb{R}^n)$ be such that $\theta(\xi) = 0$ for $|\xi| > 1$ and $(2\pi)^{-n/2} \int_{\mathbb{R}^n} \theta(\xi) d\xi = 1$. Let

©1985 American Mathematical Society

0002-9939/85 \$1.00 + \$.25 per page

Received by the editors September 8, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35S05, 47G05.

Key words and phrases. Spectrum, weak spectrum, multipliers, weak type (p, p), pseudo-differential operators.

 $\psi \in \mathscr{S}$ be such that $\hat{\psi} = \theta$. For k = 1, 2, ..., define

(3.1)
$$\varphi_k(x) = \varepsilon_k^{n/p} \psi(\varepsilon_k x) e^{i\xi_k \circ x}.$$

If $0 \in \rho_{w}(T_{\sigma p})$, then there is a constant C > 0 such that

(3.2)
$$m\left\{x \in \mathbf{R}^{n}: |\varphi_{k}(x)| > \alpha\right\} \leq \left\{C \|T_{\sigma}\varphi_{k}\|/\alpha\right\}^{p}$$

for all $\alpha > 0$ and k = 1, 2, ... Choosing $\alpha = \frac{1}{2} \varepsilon_k^{n/p}$ and using (3.1), inequality (3.2) becomes

(3.3)
$$m\left\{x \in \mathbf{R}^{n}: |\psi(\varepsilon_{k}x)| > \frac{1}{2}\right\} \leqslant \varepsilon_{k}^{-n}O\left(\left\|T_{o}\varphi_{k}\right\|^{p}\right)$$

Since $\psi(0) = (2\pi)^{-n/2} \int_{\mathbf{R}^n} \theta(\xi) d\xi = 1$, it follows that there exists a $\delta > 0$ such that $|\psi(x)| > \frac{1}{2}$ whenever $|x| \le \delta$. Therefore

$$m\left\{x\in\mathbf{R}^n:\left|\psi(\varepsilon_kx)\right|>\frac{1}{2}\right\}\geqslant \pi(\delta/\varepsilon_k)^n$$

for k = 1, 2, ... Hence, by (3.3),

(3.4)
$$\pi \delta^n \leqslant O\Big(\left\| T_\sigma \varphi_k \right\|^p$$

for k = 1, 2, ... But as has been shown in the proof of Theorem 3.1 in Wong [5], we can choose the ε_k 's going to zero so fast that $||T_{\sigma}\varphi_k|| \to 0$ as $k \to \infty$. Thus (3.4) is impossible.

A useful consequence of Theorem 3.1 is

COROLLARY 3.2. $\Sigma_w(T_{\sigma p})$ contains the set $\{\sigma(\xi): \xi \in \mathbf{R}^n\}$.

4. Multipliers of weak type $(p, p), 1 \le p \le \infty$. Let *m* be a bounded measurable function on **R**^{*n*}. For any $\varphi \in \mathscr{S}$, we define $T_m \varphi$ by

$$(T_m\varphi)(x) = (2\pi)^{-n/2} \int_{\mathbf{R}^n} e^{ix\cdot\xi} m(\xi)\hat{\varphi}(\xi) d\xi.$$

Suppose that there is a constant C > 0 such that

$$m\left\{x \in \mathbf{R}^{n}: \left|(T_{m}\varphi)(x)\right| > \alpha\right\} \leq \left\{C\|\varphi\|/\alpha\right\}^{p}$$

for all $\alpha > 0$ and $\varphi \in \mathcal{S}$. Then we call T_m a multiplier of weak type (p, p).

The connection between weak type multipliers and weak spectra is provided by

THEOREM 4.1. A complex number λ is in the weak resolvent set $\rho_w(T_{\sigma p})$ of $T_{\sigma p}$ if and only if $1/(\sigma(\xi) - \lambda)$ is a multiplier of weak type (p, p).

PROOF. We first prove necessity. Again for simplicity, let $\lambda = 0$. By Theorem 3.1, $\sigma(\xi)$ is bounded away from 0 for all $\xi \in \mathbb{R}^n$. For any $f \in \mathscr{S}$, define u by $\hat{u}(\xi) = \hat{f}(\xi)/\sigma(\xi)$. Then $u \in \mathscr{S}$ and $T_{\sigma}u = f$. Since $0 \in \rho_w(T_{\sigma p})$, it follows that there is a constant C > 0 such that

$$m\{x \in \mathbf{R}^n: |u(x)| > \alpha\} \leq \{C ||f||/\alpha\}^p$$

for all $\alpha > 0$ and $f \in \mathcal{S}$. Hence $1/\sigma(\xi)$ is a multiplier of weak type (p, p). Conversely, if $1/\sigma(\xi)$ is a multiplier of weak type (p, p), then there is a constant C > 0 such that

(4.1)
$$m\{x \in \mathbf{R}^n : |\varphi(x)| > \alpha\} \leq \{C \|T_{\sigma}\varphi\|/\alpha\}^p$$

for all $\alpha > 0$ and $\varphi \in \mathscr{S}$. Since $\sigma(\xi)$ is bounded away from 0 for all $\xi \in \mathbb{R}^n$, it follows that $\mathscr{S} \subseteq R(T_{\sigma p})$. This proves that $R(T_{\sigma p})$ is dense in $L^p(\mathbb{R}^n)$. Consequently, $0 \in \rho_w(T_{\sigma p})$ if we can show that (4.1) is valid for all $\varphi \in \mathscr{D}(T_{\sigma p})$.

LEMMA 4.2. Inequality (4.1) is valid for all $\varphi \in \mathscr{D}(T_{\sigma p})$.

PROOF. For any $\varphi \in \mathcal{D}(T_{\sigma p})$, let $\{\varphi_k\}$ be a sequence of functions in $C_0^{\infty}(\mathbb{R}^n)$ such that $\varphi_k \to \varphi$ and $T_{\sigma}\varphi_k \to T_{\sigma p}\varphi$ in $L^p(\mathbb{R}^n)$ as $k \to \infty$. Pick a subsequence of $\{\varphi_k\}$, again denoted by $\{\varphi_k\}$, such that $\varphi_k \to \varphi$ a.e. on \mathbb{R}^n . For any $\alpha > 0$, we set

$$E(\alpha) = \{ x \in \mathbf{R}^n : |\varphi(x)| > \alpha \}$$

and

$$E_k(\alpha) = \left\{ x \in \mathbf{R}^n \colon |\varphi_k(x)| > \alpha \right\}$$

for k = 1, 2, ... Since $\varphi \in L^p(\mathbb{R}^n)$, it follows that $m(E(\alpha)) < \infty$. So for any $\varepsilon > 0$, by Egoroff's Theorem, we can find a measurable set $A_{\varepsilon} \subseteq \mathbb{R}^n$ such that $m(A_{\varepsilon}) < \varepsilon$ and $\varphi_k(x) \to \varphi(x)$ uniformly for all $x \in E(\alpha) - A_{\varepsilon}$. Hence, there exists a positive integer K such that $|\varphi_k(x)| > \alpha$ whenever $k \ge K$. For such k's, $E(\alpha) - A_{\varepsilon} \subseteq E_k(\alpha)$, and using (4.1) and letting $k \to \infty$, we get

$$m(E(\alpha)) - \varepsilon \leq \left\{ C \| T_{\sigma p} \varphi \| / \alpha \right\}^{p}$$

for every $\alpha > 0$. Since ε is an arbitrary positive number, the proof is complete.

5. An example. We begin with an observation.

LEMMA 5.1. For any p such that $1 \le p < \infty$, a sufficient condition for $\Sigma_w(T_{\sigma p}) = \Sigma(T_{\sigma p})$ is that $\Sigma(T_{\sigma p}) = \{\sigma(\xi) : \xi \in \mathbf{R}^n\}.$

Lemma 5.1 follows immediately from Corollary 3.2 and the fact that $\Sigma_{w}(T_{\sigma p}) \subseteq \Sigma(T_{\sigma p})$.

Let τ be the function defined by $\tau(\xi) = e^{i|\xi|^a}/(1+|\xi|^c)$, where 0 < a < 1 and 0 < c < na/2. Then, defining σ by $\sigma(\xi) = 1/\tau(\xi)$, it is clear that $\sigma \in S_{1-a,0}^c$. As has been proved in Wong [3, 4], $\Sigma(T_{\sigma p}) = \{\sigma(\xi): \xi \in \mathbb{R}^n\}$ if p is any number such that $1 and <math>|1/p - 1/2| \le c/na$, and $\Sigma(T_{\sigma p}) = \mathbb{C}$ if |1/p - 1/2| > c/na. The following result tells us that we know exactly what $\Sigma_w(T_{\sigma p})$ is if 1 .

Theorem 5.2. $\Sigma_w(T_{\sigma p}) = \Sigma(T_{\sigma p}), 1 .$

PROOF. In view of Lemma 5.1, we need only consider |1/p - 1/2| > c/na. We first suppose that 1/p > 1/2 + c/na. If $\lambda \in \Sigma(T_{\sigma p})$ and $\lambda \notin \Sigma_w(T_{\sigma p})$, then by Theorem 4.1, $1/(\sigma(\xi) - \lambda)$ is a multiplier of weak types (2, 2) and (p, p). Hence, by the Marcinkiewicz interpolation theorem, $1/(\sigma(\xi) - \lambda)$ is an L^q multiplier for any q such that 1/2 + c/na < 1/q < 1/p. Thus, by Theorem 3.3 in Wong [3], $\lambda \in \rho(T_{\sigma q})$. But Theorem 3.1 in Wong [4] says that the spectrum of $T_{\sigma q}$ is either C or $\{\sigma(\xi): \xi \in \mathbb{R}^n\}$. Hence, $\Sigma(T_{\sigma q}) = \{\sigma(\xi): \xi \in \mathbb{R}^n\}$. This is a contradiction. The proof for the case when 1/p < 1/2 - c/na is similar.

THEOREM 5.3. $\Sigma_{\mathbf{w}}(T_{\sigma 1}) = \{ \sigma(\xi) : \xi \in \mathbf{R}^n \}.$

PROOF. By Theorems 3.1 and 4.1, we need only show that if $\lambda \in \mathbb{C}$ is such that $\sigma(\xi) \neq \lambda$ for all $\xi \in \mathbb{R}^n$, $1/(\sigma(\xi) - \lambda)$ is a multiplier of weak type (1, 1). But an easy computation shows that $1/(\sigma(\xi) - \lambda) \in S_{1-a,0}^c$, and hence it follows from Theorem 2' in Fefferman [1] that $1/(\sigma(\xi) - \lambda)$ is indeed a multiplier of weak type (1, 1).

ACKNOWLEDGEMENT. This research was partially supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. A8562.

References

1. C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.

2. M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971.

3. M. W. Wong, Spectra of pseudo-differential operators on $L^{p}(\mathbf{R}^{n})$, Comm. Partial Differential Equations 4 (1979), 1389–1401.

4. _____, On some exotic pseudo-differential operators, Comm. Partial Differential Equations 5 (1980), 733-739.

5. ____, L^{p} -spectra of strongly Carleman pseudo-differential operators, J. Funct. Anal. 44 (1981), 163–173.

DEPARTMENT OF MATHEMATICS, YORK UNIVERSITY, 4700 KEELE STREET, DOWNSVIEW, ONTARIO M3J 1P3, CANADA