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WEAK SPECTRAL THEORY

M. W. WONG

Abstract. We initiate the weak spectrum of a linear operator on Lp spaces.

1 < p < oo. The weak spectrum of a pseudo-differential operator with symbol in

Sac where -oo < m < oo and 0 < p < 1, is investigated.

1. Introduction. For m g (-oo, oo) and p g [0,1], we define S™0 to be the set of all

functions a in CX(R") such that, for each multi-index a, (Dao)(£) = 0(|£|"'-p|a|) as

||| -* oo. Let a G 5pm0. Then we define the pseudo-differential operator Ta, initially

on ^(the Schwartz space), by

(7»(x) = {2Tr)-"/2f   e"Mi)4>(t)dt

for all ipey. Here, " denotes the Fourier transformation. Obviously Ta maps yinto

y. It can be shown (see Proposition 2.1 in Wong [5]) that, for 1 < p < oo, Ta:

y—>yis closable in LP(R"). We denote the closure by 7" Detailed information

about the spectrum 2(T ) of T can be found in Wong [3, 4, 5]. The corresponding

results for partial differential operators have been gathered in Schechter [2].

2. The weak spectrum. Let A be a closed linear operator defined on LP(R"). Then

a complex number X is said to be in the weak resolvent set pw(A) of A if the range

R(A — X) of A — X is dense in LP(R") and there is a constant C > 0 such that

m{x g R": |tp(x)|> a) < {C\\(A - X)<p\\/a}P

for all a > 0 and <p in the domain 3>(A) of A. Here, m { • ■ • } denotes the Lebesgue

measure of { • • • } and || || the Lp norm. As usual, the weak spectrum 2W(^4) of A is

defined to be C - p^(A). Obviously, 2w(/i) c 1(A). That 2w(/4) can be a proper

subset of 1(A) will be shown in §5.

3. On y.w(Tcp), 1 < p < oo. We first show that 2^7^) is not empty.

Theorem 3.1. If o(í¡,) is not bounded away from a complex number X for all £ g R",

then X g 2w(ro/1).

Proof. For simplicity, we suppose that X = 0. Let {£A} be a sequence of elements

of R" such that a(£A) -> 0 as k -* oo. Let {e^} be a sequence of positive numbers.

Let 8 g C{f(R") be such that 0(£) = 0 for |£| > 1 and (2tt)-"/2¡k,8(Í) d£, = l. Let
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\p g y be such that ^ = 8. For k = 1, 2,..., define

(3.1) ?<(x) = E;'^(Eix)e'V'.

If 0 g pw(7,0/,), then there is a constant C > 0 such that

(3.2) m{x<ER":\<pk(x)\>a} ^ {C||7>J/a]

for all a > 0 and k = 1, 2.Choosing a = JcJ//' and using (3.1), inequality (3.2)

becomes

(3.3) m{x G R: |^(e,x)| > +} ^ e**0(i|7>/).

Since vHO) = (277)'"/2/R„f?(|) ¿£ = 1, it follows that there exists a 8 > 0 such that

I'M-*)I > 2 whenever |x| < 8. Therefore

m{x G R": |^(eA.Jc)| > {-} > ^(ô/ej"

for A: = 1,2,.... Hence, by (3.3),

(3-4) »*"<o(||7>/)

for k = 1,2,_But as has been shown in the proof of Theorem 3.1 in Wong [5], we

can choose the e/s going to zero so fast that HT^H -» 0 as k -* oo. Thus (3.4) is

impossible.

A useful consequence of Theorem 3.1 is

Corollary 3.2. tw(Top) contains the set (a(£): £ g R"}.

4. Multipliers of weak type (/?, p), 1 </? < oo. Let m be a bounded measurable

function on R". For any (p e y, we define Tm<p by

(7»(x) = (2wy/2f   eixim(m^)dl

Suppose that there is a constant C > 0 such that

m{x G R": |(7»(x)| > a) < {C|H|/a}'

for all a > 0 and tp g y. Then we call Tm a multiplier of weak type ( p, p).

The connection between weak type multipliers and weak spectra is provided by

Theorem 4.1. A complex number X is in the weak resolvent set pw(T ) of Ta if and

only z/l/(a(|) — X) is a multiplier of weak type (p, p).

Proof. We first prove necessity. Again for simplicity, let X = 0. By Theorem 3.1,

a(¿) is bounded away from 0 for all £ G R". For any /g y, define u by ù(£) =

/(!)/o(£). Then ueyand 7> =/. Since 0 g pw(7't,/,), it follows that there is a

constant C > 0 such that

m{x g R": \u(x)\ > a) < {C||/||/o}''

for all a > 0 and f^Sf. Hence l/a(£) is a multiplier of weak type (p,p).

Conversely, if l/a(£) is a multiplier of weak type (p, p), then there is a constant

C > 0 such that

(4.1) m{x G R    \<p(x)\ > a) <£ {C||ro«p||/a}'
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for all a > 0 and m g y. Since a(£) is bounded away from 0 for all £ g R", it

follows that y ç R(Tap). This proves that R(Tcp) is dense in LP(R"). Consequently,

0 g pw(Tap) if we can show that (4.1) is valid for all <p g 9)(Tap).

Lemma 4.2. Inequality (4.1) is valid for all <p g 3>(T  ).

Proof. For any <p g 3¡(Tap), let {yk} be a sequence of functions in Qy(R") such

that <pk -* cp and Ta<pk -* Tapq> in LP(R") as A -» oo. Pick a subsequence of {<pk},

again denoted by {cpk}, such that <pk -* <p a.e. on R". For any a > 0, we set

and

£(a) = {x g R": jm(x)| > a}

£,(a)= {xgR": |<p,(x)| > a)

îot k = 1,2,.... Since <p g Lp(R"), it follows that m(£(a)) < oo. So for any e > 0,

by Egoroff's Theorem, we can find a measurable set AF c R" such that m(Ae) < e

and <pk(x) -» <p(x) uniformly for all x g E(a) — Ae. Hence, there exists a positive

integer K such that |<pA(x)| > a whenever k > K. For such fc's, £(a) — ̂ 4E ç Ek(a),

and using (4.1) and letting A: -» oo, we get

m(£(a))-e< {cllr^H/a}"

for every a > 0. Since e is an arbitrary positive number, the proof is complete.

5. An example. We begin with an observation.

Lemma 5.1. For any p such that 1 ^ p < oo, a sufficient condition for y^.(Tap) =

y(Tap) is that Z(Tap) = {0(|): £ g R»}.

Lemma 5.1 follows immediately from Corollary 3.2 and the fact that 2w(ro/,) ç

2(7;,).
Let t be the function defined by t(£) = e'li|U/(l + |||c'), where 0 < a < 1 and

0 < c < «a/2. Then, defining a by a(£) = 1/t(|), it is clear that a G S{_a0. As has

been proved in Wong [3, 4], 1(Tap) = (a(£): £ g R"} if p is any number such that

1 < p < oo and |l/p - 1/2| < c/na, and Z(Tap) = C if |l/p - l/2| > c/na. The

following result tells us that we know exactly what 2W(7'  ) is if 1 < p < oo.

Theorem 5.2. 2JTop) = 2(Tap), l< p < cc.

Proof. In view of Lemma 5.1, we need only consider \l/p — 1/2| > c/na. We

first suppose that l/p > 1/2 + c/na. If X g 2(7^) and A G 2^,(7^), then by

Theorem 4.1, l/(a(£) - A) is a multiplier of weak types (2,2) and ( p, p). Hence, by

the Marcinkiewicz interpolation theorem, l/(a(£) — X) is an Lq multiplier for any q

such that 1/2 + c/na < l/q < l/p. Thus, by Theorem 3.3 in Wong [3], À g p(Ta ).

But Theorem 3.1 in Wong [4] says that the spectrum of T„ is either C or (a(£):

£ g R"}. Hence, 2(7^) = (a(£): £ G R"}. This is a contradiction. The proof for the

case when l/p < 1/2 — c/na is similar.

Theorem 5.3. 2J7ol) = {a(£):£GR"}.
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Proof. By Theorems 3.1 and 4.1, we need only show that if X g C is such that

a(£) =£ X for all £ G R", l/(a(£) - X) is a multiplier of weak type (1,1). But an easy

computation shows that l/(a(£) - À) g Sx_a 0, and hence it follows from Theorem

2' in Fefferman [1] that l/(a(£) — A) is indeed a multiplier of weak type (1,1).
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