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STRUCTURE OF THE EFFICIENT POINT SET

DINH THE LUC

Abstract. Let C be a nontrivial cone and Y be a set in the «-dimensional Euclidean

space. Denote by E( Y|C) the set of all efficient points of X with respect to C. It will

be proven that under some adequate assumptions E(Y|C) is homeomorphic to a

simplex while n = 2, and for n > 2 it is a contractible set. Furthermore, the set of all

weak efficient points of X with respect to C is arcwise connected and its local

contractibility is equivalent to being a retract of X. The results presented in this

study cover all topological properties of the efficient point set which have been

obtained by Peleg and Morozov for the case when C is the nonnegative orthant.

1. Introduction. The standard mathematical definition of Pareto optimum was first

given by Debreu [5] in 1954 and soon became a fundamental concept in economic

equilibrium theory, multicriteria optimization, game theory and other areas of

mathematics. Smale [11], Schecter [10] and some other authors provided elegant

descriptions of the differentiable structure of Pareto optima. The definition of Pareto

optimum in the above-mentioned papers is based on differentials, therefore it is

slightly different from the classical one. Concerning the classical Pareto optima,

Peleg [8], Morozov [7] and Podinovskij [9] gave a deep study on the topological

properties of the efficient point set. The topological features which have been

pointed out in [7-9] are closely related to the fixed point property which is useful in

proving the existence of equilibria for various market mechanisms, and for develop-

ing the iterative algorithm for determining the equilibria.

In relation to the Pareto optima in a more general setup such as that of Yu [13] or

Corley [4], there are only a few works, and the authors investigate mainly the linear

case where it is easy to derive Pareto optimum from the scalar representation (see,

for example, [2, 13]). The purpose of our paper is to study the topological structure

of the efficient point set with respect to a cone for some classes of convex sets in

finite-dimensional Euclidean spaces. In fact, we shall prove in §3 that if a set is

cone-convex and cone-closed, then its efficient point set with respect to the cone is

contractible. This result may be improved in the 2-dimensional space, namely the

efficient point set of a cone-convex, cone-compact set is homeomorphic to a simplex.

In §4 we shall give a short presentation on the structure of the weak efficient point

set. It will be proven that the weak efficient point set of a convex closed set is

arcwise connected and is locally contractible if and only if it is a retract of the set.

Earlier results of [8, 7, 9 and 12] concerning topological properties of the efficient

point set can be derived from the results of the present paper as a particular case

when the cone is the nonnegative orthant of the space.
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2. Preliminaries. Throughout this paper let R" be the «-dimensional Euclidean

space, let C be a cone and X a nonempty set in R".

Definition 2.1. A point x g X is said to be an efficient point of X with respect to

C if every y G X with y — x G C implies _y = x.

Definition 2.2. Assume that the interior int C of C is nonempty. It is said that

x G X is a weak efficient point of X with respect to C if there is no y g X such that

y> - x e ia£ C.

Let Yi(X\C) and WE(X|C) denote the set of all efficient points and the set of all

weak efficient points of X with respect to C, respectively. In the case when C is the

nonnegative orthant R"+ of R", E(A'IC) is called the Pareto optimal set of X and let

it be denoted by PO(X), and similarly let WE( A'|C) be denoted by WPO(Jf).

In economic theory the definition of Pareto optima is often presented in the

following manner. It is given a set of alternatives available to n agents and each

agent has a utility function over the set of alternatives. An alternative x is called a

Pareto optimum if there is no other alternative y such that the value of every utility

function at y is not smaller and at least one of them is greater than the one at x. This

definition of a Pareto optimum becomes the one we defined when transformed to the

utility space, i.e. the space of the values of utility functions.

Definition 2.3. It is said that X is C-convex, C-closed if the set X - C is convex,

closed, respectively. If there is a bounded set Fcfi" such that X — C c Y — C,

then X is called C-bounded. If X is C-closed and C-bounded, then it is called

C-compact.

Definition 2.4. X is said to be C-strictly convex if it is a C-convex set with

nonempty interior, and for each x, y G X, x =t y, the set (x + y)/2 + C has a

nonempty intersection with int X.

Definition 2.5. X is said to be C-quasistrictly convex provided it is a C-convex

set and for each x g X\ E( X\C) the set x + C has a nonempty intersection with the

relative interior ri(X - C) of X - C. If C = R"+, then we say that X is quasistrictly

convex.

Remark 2.1. Every C-strictly convex set is C-quasistrictly convex; however, the

inverse is not true even when X is convex and its interior is nonempty. For instance,

the triangle with vertices (0,0), (0,1) and (1,0) in the space R2 is quasistrictly convex

but not Zx ̂.-strictly convex.

We recall that C is pointed if C D (-C) c {0}, and C* denotes the nonnegative

polar cone of C, i.e. C* = {p g R": (p, x) > 0 for each x g C}. The following

assumption will be imposed on C and X, although many of our results which will be

proven remain valid without this assumption:

Assumption 2.1. C is convex, closed and pointed; Xis C-closed and C-convex.

The following lemmas are either easy to prove or they may be found in [4 and 13].

Therefore, the proofs are omitted.

Lemma 2.1. E(X\C) is nonempty if and only if X — C and C have no common

direction of recession.

Lemma 2.2. E(X\C) = E(X - C\C).
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Lemma 2.3. Let T be a nondegenerated affine transformation of R". Then

T(E(X\C)) = E(TX\ TC).

Lemma 2.4. Let E^(A') be the set of all points of X which solve the optimization

problem max(p, x), subject to x g X, where p is an arbitrary vector of R". Then the

following relations hold:

U     Ep(X)çzE(X\C)Q    (J    Ep(X).
peinte* peC*

Ml = i 11^11 = 1

Lemma 2.5. If, in addition to Assumption 2.1, we suppose int C # 0, then

(i)UpeC.,lp^xEp(X) = WE(X\C),
(ii) WE( X\C) = E( X\C) if and only if X is C-quasistrictly convex.

Proof. Observe that x g WE(A'IC) if and only if x g X and the convex sets

x + intC and X — C are disjoint. Now, the first statement is a simple consequence

of the separation theorem (see [1]). The second statement can be verified directly by

using Definitions 2.2 and 2.5.    D

In order to formulate further results more definitions are needed from [1 and 3].

For the sake of convenience they will be mentioned next.

Let F be a set-valued map from a set A c R" into R". F is said to be upper

semicontinuous at x0 G A if for any open set U which contains F(xQ) there exists a

neighborhood V of x0 such that x G A O V implies F(x) c U. F is said to be lower

semicontinuous at x0 if for any open set U which meets F(x0) there exists a

neighborhood V of x0 such that U meets F(x) for every x G A n V. If F is upper

and lower semicontinuous at x G A, we say F is continuous at x. F is said to be

Hausdorff continuous on A provided it is continuous at every point of A and F(x) is

compact for each x g A.

Furthermore, a set A is said to be contractible if there exist a continuous map

H(x, t): A X [0,1] -» A and a point x' G A such that

(1) ZZ(x,0) = x'    and   ZZ(x,l) = x    for each x g /í.

A subset B <z A is said to be a retract of /I if there exists a continuous map «:

^ -» 5 such that

(2) h(x) = x    for each x g 5.

Finally, a set /4 is said to be locally contractible provided any neighborhood V of

any point x g A contains a neighborhood t/3x such that U n A is contractible.

3. Structure of the efficient point set. In this section, in addition to Assumption

2.1, we suppose that E(X\C) is nonempty. Moreover, by passing to the space of

smaller dimension if necessary it may be assumed that int(^ - C) is nonempty. In

further discussions we shall write E(X) instead of E(X\C) if it does not lead to

confusion.

Let G be a set-valued map defined onl- C as follows:

G(x) = (x + C)n(X- C)    îoTxeX-C.

It is clear that G(x) is nonempty, convex and compact for each x g X - C.
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Lemma 3.1. Let x g im(X - C) and y g G(x). For every neighborhood U of y

there exists a neighborhood V of x in int( X — C) such that V a [U P\ (X — C)] — C.

Proof. Suppose to the contrary that for some neighborhood U of y there exists a

sequence {xk}, xk g int(A" - C), lim xk = x such that

(3) xke[un(x-c)]-c.

Take an open ball V with centre x and radius e such that V c int( X - C). By the

convexity of X — C, the convex hull of V and y lies in X — C. Moreover, for each t

from the open interval between 0 and 1 the ball V, with centre y, = ty + (1 — t)x

and radius (1 — t)e belongs to X — C and Vt — C contains x as an interior point.

Now, for t being near to 1, Vt lies in U D (X — C) and this contradicts (3). Thus the

proof is complete.    D

Lemma 3.2. G(x) is Hausdorff continuous at every point o/int( X - C) U E( X).

Proof. Suppose first that jc0 g E^). We have G(x0) = {x0}. Let Ube an open

set containing x0. If there were a sequence {xk} with lim xk = x0, xk g X - C, and

a sequence {yk} with yk g G(xk) and yk G U; then any cluster point y0 of {yk}

would be different from x0, and moreover, y0 — x0 g C, contradicting x0 G E( X).

Thus, the upper semicontinuity of G(x) at x0 is proven, and its lower semicontinuity

can also be verified similarly by using the fact that any open set meeting G(x0)

contains G(x0). Now, let x0 G int(X - C). for the lower semicontinuity we suppose

to the contrary that there are an open set U meeting G(x0) and a sequence {xk}

with xk g int( X — C), lim xk = x0 such that

(4) G(x ) n U = 0V    / V    k f

Takers g G(x0) n i/and apply Lemma 3.1 to get a sequence {yk},yk g (xk + C)

Pi (X — C)= C7(x¿) with lim yk = y0, contradicting (4). The upper semicontinuity

follows immediately from the closedness of X - C and that of G(x). Thus the

lemma is proven.    D

Remark 3.1. It can be easily seen that G(x) is upper semicontinuous on X - C,

however, it is not necessary for G to be lower continuous on X — C. It can also be

proven that G is continuous onl- C if X is C-strictly convex.

Corollary 3.1. If X is C-quasistrictly convex, then G(x) is H ausdorff continuous

on X.

Proof. Under the assumption of the corollary we have X c mi(X - C) U E(X).

Then apply Lemma 3.2 to get the assertion.

Lemma 3.3. If Xis C-quasistrictly convex, then E(X) is closed.

Proof. Let {yk} be a sequence of efficient points of X with lim yk = y being in

X — C by the C-closedness of X. Suppose to the contrary that y G E(A'). Take a

point z with z ¥= y, z <^ (y + C) C\ int(Ar - C) and a neighborhood F of 0 such that

z + V <z X - C. For large values of k, yk = y + vk where vk g V. Hence z + vk G

yk + C with z + vk G X - C. Thusv^. £ E( X), and this contradiction completes the

proof.    D
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Remark 3.2. In general, without the assumption made in the previous lemma,

E(X) may not be closed in the case of X c R", « > 2. For « = 2 the structure of

E( X) is very simple, as shown by the following result.

Theorem 3.1. Assume that X is C-compact and X c R2. Then E(X) is homeomor-

phic to a simplex.

Proof. Consider first the case when dim C = 2. By Lemma 2.3 we may assume

C = R2+ and X c int R2+. For the closedness of PO^), let {xk} be a sequence of

points of PO( A') with lim xk = x e. X — R2+. If x was not a Pareto optimal point of

X, then there would be a point x g X with y > x, say y1 > x , y2 > x2 where

x = (x1, x2),y = (y1, y2). For large values of k we havex,2 > y2 since xk g PO^).

Consider the segment [xk , y] for a fixed, sufficiently large k0. Obviously this

segment lies in X - C and the set [xk , y] - int C contains x. When xk converges to

x we arrive at xk g VO(X), a contradiction, and consequently PO(A') is closed.

Now, we show that the cone generated by PO(Ar) is convex. Suppose that a and b

are two different points of PO^) and c = Xa + (1 - X)b for some A G [0,1].

Consider the optimization problem

max t,    subject to t ^ 0 and te g X — C.

It is clear that this problem has an optimal solution, say t'. We shall next prove that

t'c g YO(X). Indeed, if t'c was not in PO(A'), then there would be a point x g X

with x G t'c + C, x # t'c. Observe that the triangle with vertices a, b and x is

contained in X — C and it contains t'c as an interior point. This relation contradicts

the choice of t'. Hence the convexity of the cone is established. Furthermore, for

each c G PO(A^) the ray starting from 0 through c meets PO^) at the only point c.

This fact shows that PO(A') is homeomorphic to the simplex which generates the

above convex, closed cone.

For the case dimC = 1, as noted in the beginning of the proof, we may assume

X c int R\ and C is one of the coordinate axes, say the first one. Let x0 and y0 solve

the following problems:

min x2,    subject to x = (x1, x2) g X - C, x1 = 0,

max x2,   subject to x = (x1, x2) g X - C, x1 = 0,

respectively. These solutions exist and are unique by the C-compactness and

C-convexity of X. We shall next verify that E(X) is homeomorphic to the segment

[x0, y0]. For, construct two maps /: [x0, y0] -* E(X) and /': E(X) -» [x0, y0] as

follows: for x = (0, x2) g [x0, y0],f(x) = y where y = (y1, y2) with)'1 = max{í >

0: (/, >>2)G X - C},y2 = x2, for y = (/, y2) g E(X),f'(y)= (0, y2). It is clear

that / and /' are correctly defined and continuous. These maps provide a homeomor-

phism between [x0, y0] and E(X). The proof is complete.    D

Remark 3.3. For an arbitrary strictly convex compact set .Yin R" with « > 2, it is

not necessary for PO(A') to be homeomorphic to a simplex. In the following

example, we shall give a quasistrictly convex compact set in R3 with the Pareto
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optimal set not being homeomorphic to a simplex. It is easy to modify this example

for the strictly convex case.

Example 3.1. Let X be the polyhedron in R3 with the following five vertices:

(3,2,0), (2, 3,0), (4,0,0), (0,4,0) and (2.6,2.6, 3). This polyhedron is a quasistrictly

convex set. Its Pareto optimal set consists of two triangles, one with vertices (4,0,0),

(3,2,0), (2.6,2.6,3) and another with vertices (0,4,0), (2,3,0), (2.6,2.6, 3). These

triangles have only one common point (2.6,2.6,3) and their union cannot be

homeomorphic to a simplex.

Theorem 3.2. E( X) is contractible.

Proof. Let Rk be the smallest subspace of R" which contains C. Let C denote the

nonnegative polar cone of C in Rk. Since C is pointed, there exists t' g ri C such

that (t',e) = 1 for some e G ri C. Construct a map F(x): X - C -* R" as follows:

F(x) = x +(a - (t',x))e/ß,

where a and ß are constants which are defined next. Set a = max{(/', x): x G X —

C}. Since /' eriC'ç int C* and E(A') # 0 the value of a is finite. Also, since

/' g int C* there exists a positive e such that t' g t + C for each / g C* with

||?|| < e. Moreover, as e G ri C, ß = e ■ min{(?, e): t G C, \\t\\ = 1} will be positive.

Hence F(x) is correctly defined and continuous on X — C. We shall prove that

(5) F(x)Gy. + C   for each y G G(x).

Indeed,

(6) F(x) g x + </', y - x) • e/ß + C   for each y G G(x).

Moreover, from the definition of ß and from the fact that y — x g C it follows that

(t' ■ (e, t)/ß - t, y - x> > 0    for each/ g C with ||r|| = 1.

The latter relation is equivalent to

(7) ((t',y - x) ■ e/ß-(y - x),t)^0    for each t g C, ||/|| = 1.

Since (t', y — x) • e/ß — (y - x) S ZcA, (7) implies

(8) (t',y-x)-e/ß-(y-x)^C",

where C" is the nonnegative polar cone of C in Rk. By the closedness of C we have

C" = C. Now, to get (5) it suffices to combine (8) with (6). Furthermore, let / be a

map from X - C into E(X) which is defined in the following way: f(x) = y where y

solves the optimization problem

min||z — F(x)||,    subject to z g G(x).

In virtue of (5) and the fact that G(x) is convex compact, the above map is correctly

defined. Moreover, if x g E(A') then C7(x)={x) and consequently/(x) = x.

Furthermore, by Lemma 3.2, G(x) is continuous at every point of int(X— C) U

E(X) and so is/(x). The map H(x, t) from E(X) X [0,1] into E(X) may be defined

as follows:

H(x,t)=f(tx+(l - t)a),
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where a is some fixed point from intiA' - C). It is clear that H(x, t) is continuous

and satisfies (1). In this way, E(A") is contractible and the theorem is proven.    D

Theorem 3.3. E( X) is closed if and only if it is a retract of X - C.

Proof. Since X - C is closed, therefore any retract of this set is closed. Now

suppose that E( X) is closed. Denote by d(x, E(A")) the distance from x to E( X) and

let/(x) = d(x,E(X))/(l + d(x, E(X))). Defineh(x): X - C -» E(Z)by

h(x)=f((l-t(x))x + t(x)a),

where a is a fixed point from int(A' — C) and/is the function defined in the proof

of Theorem 3.2. For any x g X — C we have

(1 - t(x))x + t(x)a g m(X- C) U E(A').

Therefore, h(x) is continuous on X — C. Moreover, if x g E( X), then h(x) =/(x)

= x. Consequently, (2) holds and the theorem is proven.   D

Corollary 3.2. Assume that X is C-quasistrictly convex. Then E(X) is a retract of

the convex hull of X.

Proof. By Lemma 3.3, E(X) is closed. The restriction of the map h(x) being

defined in the previous proof on the convex hull of X will satisfy (2) and this

observation completes the proof.    D

4. Structure of the weak efficient point set. It is assumed in this section that C is a

pointed, convex, closed cone with nonempty interior and A" is a closed, convex set.

Theorem 4.1. IfE(X) is nonempty, then WE(A') is arcwise connected.

Proof. Let x and y g WE( X). It is easy to see that (x + C)C\ Xand(y + C) n X

belong to WE( X) and have nonempty intersections with E( A'). Let x' and y' be two

points from these intersections. In virtue of Theorem 3.2, x' and y' can be connected

by some arc in E( X). This arc and the segments [x, x'], [y, y'] will connect x with y

in WE( X). Thus, the proof is complete.    D

Remark 4.1. If E(A') = 0, then WE(I) may be disconnected. For example, in

the 3-dimensional space R3, let X be the convex hull of the following points: (0,0,0),

(0,1,0), (1,0,0), (0,0, k), (0,1, k), (1,0, A:) and (1 - l/2\ 1 - l/2\ k), k = 1,
2,....ThenPO(Ar) = 0 and

WPO(AT) = {(1,0, z): z > 0} u {(0,1, z): z > 0}.

Theorem 4.2. Assume that E( X) # 0. WE( X) is locally contractible if and only if

it is a retract of X.

Proof. Since X is a convex closed set, it is locally contractible, and so is any

retract of X. Now, suppose that WE(I) is locally contractible. By Dugundji's

theorem [6, Theorem 15.1] it follows that WE(A') is a retract of some neighborhood

V of WE(AT) in X, i.e. there exists a continuous map «,(x) from V into WE(A')

satisfying (2). Furthermore, for every integer k > 0 there exists a number s(k) > 0

such that

h2(x)= (x + sd(x, W)f(x))/(l + sd(x, W))



440 D. T. LUC

lies in V for each x g X with ||x|| < k, s > s(k), where /is the map constructed in

the proof of Theorem 3.2, and d(x, W) is the distance from x to WEfX). Without

loss of generality we may assume that s(k + 1) > s(k) for each k.

Let

s(t) = [s(k + 2) -s(k + l)]t +(k + l)s(k + 1) - ks(k + 2)

for/ e [it, k + 1], k = 1,2,..., and let

A3(x) = (x + í(||x||)¿(x, ÍK)/(x))/(l + s(||x||)rf(x, If)).

It is obvious that «3 is a continuous map on X. Moreover, h3(x) g V for each x g X

and «3(x) = x if x g WE(A'). Now the composition hxh3(x) will be a continuous

map from X into WE(Ar) which satisfies (2). Thus WE( X) is a retract of A" and the

proof is complete.   □

5. Conclusion. In the present paper we have only concerned ourselves with the

utility space, i.e. the space where utility functions take their values. The reader will

be asked to derive the earlier results obtained by the authors of [7-9 and 12] from

ours, except for those of [12] concerning the space of the alternatives, which we shall

point out in a forthcoming paper.
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