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A NONLINEAR BOUNDARY PROBLEM

JOHN R. HATCHER

Abstract. A nonlinear Hubert problem of power type is solved in closed form by

representing a sectionally holomorphic function by means of an integral with power

kernel. This technique transforms the problem to one of solving an integral equation

of the generalized Abel type.

1. Introduction. In this paper we consider the problem of finding a function

0(z) = u + iv, holomorphic in the plane cut along the interval [0,1] and vanishing

at infinity, such that

(1.1) [$ + (x)]a + [$-(x)]a=/   on(0,l),       0<a<l,

where, as usual, $ ±(x) are the limiting values of O(z) on the approaches to the cut

from above and below, respectively. As basis for the presented process of solution it

is assumed that/(x) G D(H). The class D(H) is the union of all functions/(x)

with a derivative satisfying a Holder condition on [0,1] with the possible exception

of the endpoints 0,1, but, for x G (0,1) and near/?,

|/'(x)|<M/|x-/>f;

p stands for either of the endpoints, and M, ¡ti are positive constants, p. < 1.

It appears that the nonlinear boundary problem (1.1) is related in some manner to

an ordinary linear nonhomogeneous Hubert problem. However, we avoid this

approach to the solution because 3>a may not be analytic. Our procedure then is to

put

(1.2) ^(z)=(fl(t-zy\(t)dt)1/a,       z « [0,1],

where the function <p is sought in the class defined by

(1.3) <p(x)= **(x),e ,       0<x<l,
x'-'U-x)1   E2

with e,, e2 > 0 and tp*(x) is Holder continuous on [0,1].

The limiting values $ *(x) of ®(z) on the approaches to the cut from above and

below will be needed. Consequently, we define

arg(/ -z)->+77,   z -* x ± iQ,       0 < / < x < 1,

arg(z - z) -» 0,    z->x±/0,       0 < x < / < 1.
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Then it follows from (1.2) that

(1.4) *Hx)=[jla(x)e+-'™ + J2a(x)}l/a,

where

AÂX) = f (X - ty\(t) dt, J2a(x) = f (/ - X)am(/) J/.
■'o *x

Thus, by substituting into (1.1) the limiting values «^(x) from formulae (1.4), we

obtain

(1.5) 2/la(x)cos77a + 2/2a(x)=/(x).

Equation (1.5) is a special case of the type known as Abel's generalized integral

equation [1]. Its solution in the class defined by (1.3) determines the function <P(z)

given by (1.2).

2. Solution of the generalized Abel equation. Consider the sectionally holomorphic

function fi defined by

S2(z)= [z(l - z)Ya-1)/2 f1 (t-Zy\(t)dt,       z<£ [0,1],

where some branch of the many-valued function [z(l - z)](a~1)/2(t - z)~a is cho-

sen.

Define arg z -» 0 as z -» x + (0 and arg z -* 2tt as z -> x - ;0 for 0 < x < 1.

Then it follows that

(21) i/?(x)fi+(x) = yla(x)^ + /2a(x),

-R(x)ü-(x) = Jla{x) + J2a(x)e'™,

where R(x) = [x(l - x)].

Solving (2.1) ior JXa(x), J2a(x) and inserting these values into (1.5), we obtain the

nonhomogeneous Hilbert problem í2+(x) = e~"™Q~(x) +/(x)/R(x) or, equiva-

len tly,

ü+(x)    a-(x) _     /(x)

H+(x)      H(x)      R(x)H+(x)'

where H(z) = za/2(l - z)~a/2. Thus, we have

H(z)   ,1 f(t)dtq(z) = ë\ii y_m)*
U{Z)       277/   J0   H + (t)R(t)(t

so that by the well-known Plemelj formulae [2] for the limiting values of a Cauchy

integral, we have

(2.2)     0±(x) = HHx){        ±/[X\   ,+^f1      +i {{X\d!-;
V      ' y   ' V   '\2H+(x)R(x)      2ttiJ0   H+(t)R(t)(t- x)
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Now, by virtue of (2.1) and (2.2), it follows that

(2.3)
j   ,,      R(x)[Q + (x)e'™ + n-(x)\

1°^      ' 27Tia _   i

-R(x)H+(x)   ri f(t)dt

2TTsinTTa      J0    H+(t)R(t)(t - x)

-fc(l - x)l/1-a n   (l-t)af(t)dt
y Ai
Jo    ft2TTsinTTa        J0    ft ijl - t(t- x)'

Equation (2.3) is an ordinary Abel equation to be solved for <p. Because the solution

depends on the differentiability of the right-hand side of (2.3), we establish the

following lemma.

Lemma. Forf(x) G D(H) andO < a < 1, let

Jo    ]/1 vl - / ( / - x )

where the integral is taken in the sense of principal value. Then Q(x) is differentiable

0 < x < 1 and

Ql{x) =       l        ri ftfT^t[(l -t)af(t)]'dt

fc f — x •'o

Proof. For sufficiently small e > 0 put

/ - x

•in

.   (l-t)"f(t)dt      n     (l-t)af(t)dt

0 V7~vT^7(/ - x)       4+e   ffT^~t(t - X) '

Also let

A(x, t) = log
fö]/l - / - vWl - x

VxVl - / + vWl - X

Then for fixed x and variable / we have

dA(x, t)       _dt

t * x.

fcf-x       ftf - /(/ - x)

and it follows from integration by parts that

fcA -xZf(x)

= (1 - x + e)"f(x - e)A(x, x - e) -(1 - x - e)"f(x + e)A(x, x + e)

- f"   f A(x, t)[(l - t)af(t)]'dt - fl    A(x, /)[(1 - t)af(t)]'dt.
•'0 Jx + e

Recall the meaning of A(x, /), and then rationalize and rearrange some terms to

find that

(1 - x + e)7(x - e)A(x,x - e) -(1 - x - e)af(x + e)A(x,x + e)

= 2(1 - x - e)7(x + e)log(v/xv/l - x - e + f + ef - x)

-2(1 - x + e)"f(x - e)log(fcf~- x + e + f - eVl - x)

+ [(1 -x + e)7(x-e) -(1 -x- e)7(x + e)]loge.
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Thus it follows that

Q(x) = fc vl - x limZix)
e — o

= -/^(x,/)[(i-/)7(0]'^

Vx vl - t + vWl - x
/'[(i-07(0]'log

or, equivalently,

Vx~vl - / - vWl - X
J/

(2.4) g(x) = 2 f [(1 - /)7(/)]'log(vx"v/îrr7 + fy/ï^c) dt

-f [(i-/)7(0]'iog|/-xk/.

The second integral in (2.4) is understood in the sense of principal value. Denote

this integral by 7(x) and put

/(x) = /v"e[(i-/)7(0]'iogk-x|¿/
•'o

+ í1   [(i -07(0]'iog|/-x|¿/,
•'x + e

where e > 0 is sufficiently small. Now

j;{x) = [(1 - x + e)7'(x - e) -(1 - x - e)7'(x + e)

+ a(l - x — e)a    f(x + e) — a(l — x + e)°    /(x - e)Jloge

-f [(1-07(0]',.    ri   [d-07(0]'
/ - x

dt
/ / - X

-dt,

and hence J€'(x) converges uniformly to the limit

e-»0 •'o / - X

Let this limit be denoted by L(x). Now for any x g (0,1), pick x0 such that

0 < x0 < x. Thus, since Je'(x) converges uniformly to L(x), we have

(XL(t) dt = lim   f j;(t) dt = J(x) - J(x0).
Jxa r-»0 JXo

But L(x) is continuous, and therefore J'(x) exists and

J'(x) = L(x)=-f
h [(1-07(0]'

/ — X
dt.
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Consequently, we have

Q,(x) __ ,. (/T^T/g-^T^Ija-,)•/(,)]-,
J0 Vx Vl - / + Vi Vl - x

Ii [d-07(Q]'
/ - X

dt

= n (fi~^7/fc- vt~/vT^7)(vx"vT^7- v7yT^7)[(i - 07(0]'A
•/o x - /

fi [d-07(0]'+ f   -Li-LJALLL-di
Jr, t XU

_       i       p v7"vT^7[(i -07(Q]'Jf
fx\Jl — x Jo t - X

This completes the proof.

Let us now find the solution qp of the ordinary Abel equation (2.3). First note that

(2.3) is equivalent to

Í <p(Q    dt_ -Q(x)
o    (x — t)a 2tt(1 — x)asinTTa

;dt =-^-f-,

so that

, , _ _J_d_ y        Q{t)dt
2w2dxJ0   (1 _,)■(,_,)!-■

Now integrate by parts and note that Q(0) = 0 by (2.4). Consequently, we have

v(x) = f}2-j-f{x-ty[(i-tyaQ(t)\'dt
2tt a ax Jo

j_ y [a-oQg(o]'
2tt2Jq        tx_,\1-a

or, equivalently,

P(t)dt
(2-5) <p(x) = ~f

1 tt^ Jno   (x-/)^"(l -/)i+a

where P(t) = aQ(t) + (1 - t)Q'(t).

In order to express P(t) in terms of the function/, we apply the lemma pertaining

to the differentiability of Q(x). Thus we find that

oV   Ï        r R-n   (1 - t)af(t)dt
Z>(x) = avx-Vl^7j0    ftjz--i{t_x)

+ y^ZZ p ftfy=ï[\\-t)af(t)Xdt
JV      Jn t - x
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and, after performing the indicated differentiation of the quantity in the integrand of

the second integral, it follows that

(2.6)       nX)-£^_lr*«-r*™*-A
\/x     \Jo t - x j

where

(2.7) C= f't^tl -t)"-l/2f(t)dt.

Hence, by virtue of (2.5) and (2.6), we have a formula for the function <p. Therefore

our solution of (1.1) is given by (1.2) with <p as in (2.5).

We may now formulate the following theorem.

Theorem. For 0 < a < I andf(x) g D(H), let

F(x)=r s^-<r1/2fv)dt and c=prv2{l_tr^f{t)dt_
JQ x — t J0

Then the sectionally holomorphic function

<D(z) = (/o1(/-zr<p(/)i//)1/a,       re [0,1],

where

a-1/2,   , = J_ p _F(t)dt_ aCT(a)xai/I

<P(X) ~ 2tt2 h    f (I - t)a + l/2(x - O1"" + 2TT3^2T(a + l/2)f^fe '

solves the nonlinear boundary problem (4>+(x))a + ($~(x))a =/(x), 0 < x < 1.

Example. Given that a = f and/(x) = 32x1/4(l - x) + 8^2(1 - x)1/4(4x - 3)

+ 1, find $(z) satisfying (1.1).

Solution. The reader will not encounter any difficulty in verifying that

n vWl - / ^     Ti .

fui-tM  dt        /i-^V/4      K
f        - -  =  7/    - -  77V2
J0\     t     I      t - X \     x     I

for 0 < x < 1. An excellent method for evaluating these integrals is found in

Levinson's paper [3]. These results will be used to evaluate the singular integral

Jn X t



A NONLINEAR BOUNDARY PROBLEM 447

We find that

F(x)=f
Jo

i-/\1/4
(1 - 6/ + 5/2) + 2/2 ft vl - /(19 - 20/)

dt

x - t

-tV/\-5x-5t-5x2-6x + l
t - x

+ 2v/2v7v'l - /  20-
19 - 20x

/ — x
dt

9-^f - 8.(1 - 6x + 5x0i l - ^

Also the constant C defined by (2.7) is

C = f r*/2(l - /)177(/) dt = -3m/2 +
r2(i/4)

3JÏTT

and hence the formula for <p(x) in the theorem implies <p(x) = /2 (5x - 4) +

x1/4/(Wl - x ). Thus it follows from (1.2) that

*(z) = 4/2(1 - z)1/4(4z - 3) + 16vT(-z)1/4(l - z)

Í
r1'4*

4/3

o   2W1 - t(t - z) 3/4

The fact that this function solves (1.1) can be verified by direct substitution. For

instance,

(3» + (x))V4 +(0-(x))V4 = 32x^(1 - x) + 8i/2(l - x)1/4(4x - 3) + K,

where

ft
2tt   Jn

tl'Adt 1 /-I

0   f - t(x - t) 3/4 TT J,

tl'*dt

vl - /(/ - x) 3/4

We now show that K = I by using the following formulae for the hypergeometric

function [4]:

(2.8)

F(a, b; c; x) = (1 — x)'  "    F(c — a, c — b; c; x),

; F(a, b; c; x) = ^c)r(c~ ° ~ bJ.F(a, b; a + b - c + 1; 1 - x)
^ r(c - a)T(c - b)

J./1      ^-a-/>r(c)r(a + ft- c)
+ (l-x) - -F(c - a, c- ft;c- a - ft + 1;1 - x).

r(a)T(ft)
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Now it is easy to see by virtue of a variable change from /to u that

"1/2du

0

K=_ïAX_p Ml/4(1 _ K)-3/4(l  _ xuyl
2tT    Ja

ftT2(l/A) f   r   /l    5    3      \ 1/4   /   113

'   ****■  TOT' 4 ' 2 ' *J + 2(1 " X)      Fl"4' 2 ; 4 ; 1

v^"r2(i/4) [ vVr(-i/4)      r- 1/4 /   i3 \

4.3/2     - 2r(i/4)   -2^d--)    n^'i'1-*)

-xr1/4F(-i;i;4;l
4' 2' 2

= i + ^^d-x;2.3,    -^>-1/4

4' 2' 4'

■£>(i'H:1
But the quantity within the brackets vanishes by virtue of the first formula in (2.8);

hence K = I and the solution is verified.

3. A power type boundary problem with a variable coefficient. The boundary

problem

(3.1)        ($ + (x))a+ G(x)(4>-(x))a=/(x)    on (0,1) with 0 < a < 1

can be put in the form (1.1) by using the sectionally holomorphic function X defined

by

W    \ Í      1 (l    logG(0  A rfrfil,
A'(z) = exphr—/    —-Ldt\,       zG   0,1.

\ 2777Û! J0 t — z I

It is assumed that the Holder continuous function G(x) =£ 0. The function X(z) is a

solution of the homogeneous boundary problem (A^x))" = G(x)(A^(x))a, so that

(3.1) becomes

*+(x)\" J*-(x)\" f{x)
X+(x))       \X~(x)!        (X+(x))a'

and the theory for (1.1) applies provided the function f(x)(X+(x))~a belongs to the

class D(H).
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