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MINIMAL PROJECTIONS AND ABSOLUTE PROJECTION

CONSTANTS FOR REGULAR POLYHEDRAL SPACES

BRUCE L. CHALMERS AND BORIS SHEKHTMAN1

Abstract. Let V« [vx,...,vn] be the «-dimensional space of coordinate functions

on a set of points ¡cR" where v is the set of vertices of a regular convex

polyhedron. In this paper the absolute projection constant of any «-dimensional

Banach space E isometrically isomorphic to V c C(v) is computed, examples of

which are the well-known cases E = I™, lln.

1. Introduction. Let v be a bounded set of points in R". We consider the Banach

space C(v) of all real-valued continuous functions on v and a subspace V = V(v) c

C(v) of all homogeneous functions on v, endowed with the sup norm on v. We say

that V is generated by v.

So defined, V forms a finite-dimensional Banach space and the relative projec-

tional constant X(C(v), V) coincides with the absolute projectional constant X(V).

At this point we remark that the subspace V generated by v is isometrically

isomorphic to the subspace generated by the extreme points of the convex hull of v.

In this paper we will assume without loss therefore that v = ext(co(C)).

For any / e R", .,(/) denotes the z'th coordinate of /. Under this assumption we

introduce v¡ e V by

/;,(/) = .,(/)    Vie».

The set of functions (v¡)"=1 forms a convenient basis for V, provided V is «-dimen-

sional as it is in the sequel.

In this note we construct the projection from C(v) onto Kwith the minimal norm

and compute the norm in case v are the vertices of a regular polyhedron.

We also remark that for « > 4 there are only three such polyhedra, and two of

them generate the well-known spaces /" and lln for which the projectional constants

and associated projections are known [3].

In §2 we cite some known examples, in particular, the examples of the minimal

projections (and their norms) onto the spaces generated by the vertices of regular

two-dimensional polyhedra.

§3 constitutes the bulk of this paper. Here we compute the projectional constants

on the space generated by the tetrahedron. The space seems to be missed by all

previous literature on the subject.
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2. Known examples and the case « = 2. For all « = 1, 2,... the balls of /*, /j¡° are

examples of regular polyhedra in R". Let v denote the set of vertices {v¡} *_, where

k = 2" in the case of lln and k = 2« in the case of /", and let V = V(v) = [vx,... ,vn)

denote the associated regular polyhedral space. v¡ g R* is the/th coordinate function

on v, i.e. Vjj = Vj(v¡) = vtj, 1 < / < k, 1 kj < «• Then P^: C(v) -» Fand X(V) =

11 jPmi„ 11 are known [3].

Definition. If E is an «-dimensional Banach space we say E is regularizable if

E = (isometrically isomorphic to) an «-dimensional polyhedral space V = V(v)<z

C(v), where v is the set of vertices in R" of a regular polyhedron.

Example 1. If v is not symmetric with respect to the origin then the «-dimensional

Banach space V(v U -v) = V(v).

Note. In the case « = 2 there is for every k = 2, 3,... a regular polyhedron Trk.

The following theorem follows for k = 2J, j g N by comparing the Fourier

projection with a result of Grünbaum [3] and for general k = 2m by comparing the

Fourier projection with a result of Franchetti and Votruba [2].

Theorem 1. For « = 2, let v be the set of k vertices of the regular polyhedron Trk in

R2. Then Pmin: C(v) —> V is the associated Fourier projection and

4 77
. T cot T     ifk = 41,

Mn-ii^ii-«(*)« J   I
4 TT ... ,
— csc —     if k = 2m # 4/,
k        k

and a(k) = a(2k) ifk is odd.

Let Vk denote the polyhedral space corresponding to irk. Since I2 « V(v) where v

is the unit circle in R2, we have the following expected result:

Corollary. X(Vk)  -»  X(lj).
k—*cc

3. The regular tetrahedron Tn. Let v = {v¡}k=l be the set of k vertices of a regular

polyhedron in R", and let V = V(v) = [vx,.. .,vn] be the associated «-dimensional

polyhedral space, v, G R* is the/th coordinate function on v, i.e. v¡¡ = Vj(v¡) = vi},

1 < i < k, 1 </ < «. The set ¿5 is invariant with respect to the group G of

automorphisms induced by the regular polyhedron, yielding a subgroup of permuta-

tions of ¿5. We say the projection P: C(v) -* F is symmetric if P(Sf) = S(Pf) for

arbitrary/ e C(v), S g G. We denote the set of all symmetric projections by Pc.

Proposition. Let V be a regular polyhedral space. Then X(V) = infPeP ||P||.

Proof. Let P: C(v) -» F be an arbitrary projection. Consider the mapping

Pa- irj   E S-1PS.
Sec

Clearly PG maps C(t5) into V and

II^N^ E \\s-*s\\<4f Ells-1IIMI|s|| = ||i'||.
#G s^g" #G i
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To see that Pc is a projection onto V, let y g V and then

i i
PG(y) = -^   E S-lPSy = -^   £ S^Sy = 7-

Se (7 S&G
-

Further, for SeG,

^s = -¿e E s'pss = -^-5 £ (ssy^ss = SPG
+FO- _ WO

Seo SeC

and so Pc g Pc.    D

Remark 1. For « > 4 there exist only 3 regular polyhedra, namely the balls of l\

and /" mentioned in §2 and the regular tetrahedron of the following theorem:

Theorem 2. Let v be the set of n + I vertices of the regular tetrahedron T„ in R".

Then Pmin: C(v) -* Vis given by

CW)(*,) = ̂ fy/(ö,) - -^y E ¡{»y,     i = L2,...,« + i,

andX(V) = \\Pmin\\ = 2n/(n + 1).

Proof. Any linear operator Q from C(v) onto Vis given by Qf = Axf,...,An + 1f

where / is the (« + l)-tuple (/,,... ,f„ + x), / = f(v¡), and A¡ is a fixed (« + l)-tuple

of scalars, /' = 1,...,« + 1. Now, by the proposition and the symmetry of the regular

tetrahedron, for Q = Pc g Pc, we deduce that there exist 2 fixed scalars a and b

such that Ai = (b,.. .,b, a, b,.. .,b) where a occurs in the ;'th position, / = 1,...,«

+ 1. This follows since the /cth vertex of T„ can be rotated to the /th vertex of Tn by

the unique element of G keeping the z'th vertex fixed, for all /' + k ¥= I ¥= i. Next,

without loss assume vx = (1,0,...,0); then it is known (and easy to check) that

v¡ = {-l/n, *,...,*),        / = 2,...,« + 1.

Thus, vx is the (« + l)-tuple (1,-l/n,-l/n,...,-l/n). Since PG is a projection,

PGvx = vx whence in particular (Pcvx)x = vlx, i.e. a — b = 1. Further, PG(PGf) =

PGf implies that

la2fx + 2baZjj + nb2fx +(n - l)b2"£ fj,- ■ ■)

= (afx + bf2+  ■ ■ ■ + bfn + x,...)

for all/. Hence a2 + nb2 = a and 2a + (n — 1)¿>=1 which yields the two solution

pairs

(a'ft) = (7ÎT'-^^r)'(^TT'^TT

but only the first satisfies a - b = 1. Thus a = n/(n + 1), b = -l/(« + 1). From

the symmetry of all the (PGf)¡, / = 1,...,« + 1, we conclude that

\\PC\\=   max  \(PGf)1\=   max   \bfx + af2+  • ■ • + af„+x\
11/11« = i ll/IL-i

« « 2«
=- + -7 =- .     □

« + 1        « + 1        « + 1
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Note 1. For « > 2, V(v U -v) is not an unconditional (and therefore, of course, a

nonsymmetric) «-dimensional Banach space.

Remark 2. Since v contains only « + 1 points, the best approximation operator B

from C(v) onto V(v) = Fis linear and, in fact, B = Pmin.

Remark 3. If « = 3 there are 2 regular convex polyhedra other than l\, If, Tn and

if « = 4 there are 3 such other. These 5 examples can also be calculated analogously

as in Theorem 2. In the case « = 3, for the icosahedron X(V) = (1 + -f>)/2 and for

the dodecahedron X(V) = .3(3 + v^)- In the case « = 4, for the polyhedron with 24

vertices X(V) = 5/3, for the polyhedron with 120 vertices X(V) = (6\/5 + 11)/15,

and for the polyhedron with 600 vertices X(V) = (9\/5~ + 22)/25.

For example, in the case of the dodecahedron (« = 3), we follow the procedure in

the proof of Theorem 2 and using the symmetry (see [1]) of the dodecahedron we

have PGf = (Axf,... ,A20f) where, with an appropriate ordering of the vertices, we

have Ax = (a, b, b, b, c, c, c, c, c, c, d, d, d, d, d, d, e, e, e, g), etc. Then using

Pc(PGf) — Pcf, we are led to six equations in the six unknowns, a, b, c, d, e, g. One

of the solutions is obtained by taking a = -g, b = -e, and c = -d, yielding the three

equations

2a2 + 6b2 + 12c2 = a,       4a + 8c = 1,       2b2 - 2c2 + 4ac = c

with solution a = 3/20, b = v/5~/20, c = 1/20. Then

||PC|| =   max \(PGf)x\ =   max \Axf\ = 2a + 6b + 12c = .3(3 + f> ).
11/11«, = i ll/IU-i

But also the solution a = 1/5, b = (1 + \/5 )/20, c = 1/10, d = 0, e = (1 - \/5~)/20,

g = -1/10 yields another minimal projection so that Z>min is not unique.

Remark 4. In fact the procedure of Theorem 2 can also be used to reobtain Pmin

and X(V) in the cases of the balls of l\ (trivially Prt¿n is a norm 1-interpolating

projection on the vertices on the « positive coordinate axes) and /".
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