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EMBEDDED MINIMAL SURFACES IN 3-MANIFOLDS

WITH POSITIVE SCALAR CURVATURE

J. H. RUBINSTEIN

Abstract. Let M be a closed orientable Riemannian 3-manifold with positive scalar

curvature. We prove that any embedded closed minimal surface in M has a

topological description as a generalized Heegaard surface. Also an existence theorem

is proved which gives examples of such minimal surfaces.

0. Let M3 be a closed orientable 3-manifold equipped with a Riemannian metric

with positive scalar curvature. A closed surface LcMis called minimal if the mean

curvature of L is zero everywhere. This is equivalent to the condition that, for all

variations L, of L, the area At of Lt is stationary at L, i.e., A'Q = 0.

Our aim is to give a simple topological description of such surfaces L and to

establish an existence result yielding some examples to illustrate the various cases

that can arise. We now give a brief survey of previous work in this area.

We call L c M a Heegaard surface if M — L has 2 components whose closures are

handlebodies. Heegaard surfaces L, L' c M are said to be equivalent if there is a

diffeomorphism <j>: M -> M with <j>(L) = L'. Lawson [11] showed that if M is a

Riemannian S3 with positive Ricci curvature then any embedded minimal surface is

a Heegaard surface. Note also that Waldhausen [19] proved that any two Heegaard

surfaces of the same genus in S3 are equivalent. Lawson [10] gave examples of

embedded minimal surfaces of every genus in S3 with the standard metric. In

addition, many such examples are constructed in [10] for other 3-manifolds with

constant curvature 1, i.e. of the form S3/T where T c SO(4) acts freely on S3.

Amongst these are pairs of embedded minimal surfaces in S3 with the same genus

for which there is no isometry of S3 taking one onto the other.

More recently, Meeks-Simon-Yau (see §8 of [12]) established the same result as

Lawson [11] for any M3 with positive Ricci curvature. Also they obtained a

topological characterization of orientable closed minimal surfaces embedded in

#"=152 X S1 equipped with a Riemannian metric with nonnegative scalar curvature

(see §10 of [12]). We will give similar results for any M with a metric with positive

scalar curvature (or nonnegative scalar curvature if M does not admit a flat metric)

and will also treat nonorientable minimal surfaces.
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1. In this section, we collect together some related results and definitions.

Theorem 1 [6, 18]. Let M be a closed orientable 3-manifold which admits a

Riemannian metric with positive scalar curvature. Then M can be written as a

connected sum Mx# ■ ■ ■ # Mk, where for each i either Mj is a copy of S2 X S1 or

ttx(M¡) is finite.

Remark. It is conjectured that every closed 3-manifold with finite fundamental

group is diffeomorphic to a standard spherical 3-manifold with constant curvature 1.

This has been proved by Hamilton [8] if the 3-manifold has a metric with positive

Ricci curvature.

Theorem 2 [5, 16]. Any 3-manifold M which is a finite connected sum of copies of

S2 X Sl and of standard spherical 3-manifolds admits a Riemannian metric with

positive scalar curvature.

We now state a result which is proved in [17] for closed 3-manifolds. The same

argument clearly works in the case of compact 3-manifolds with suitable boundary.

Theorem 3 [17]. Let M be a compact 3-manifold with a Riemannian metric with

positive scalar curvature and assume that dM has nonnegative mean curvature with

respect to the outward normal. Then 77, (M) has no subgroups of the form ttx(J), where

J is a closed orientable surface with genus > 0.

Definition (cf. [14]). A closed nonorientable surface K embedded in a closed

orientable 3-manifold M is called a one-sided Heegaard surface if M - K is an open

handlebody.

Remark. If K c M is a one-sided Heegaard surface then M has a double covering

M so that the preimage of A" in M is a Heegaard surface K c M (cf. [14] and §2).

Definition. (1) Suppose L2 c M3 where L, M are closed and orientable. L is

called a partial Heegaard surface for M if one of the following holds:

(a) L separates M into 2 regions, each of which is a connected sum of an open

handlebody with some closed 3-manifold.

(b) M — L is the connected sum of 2 open handlebodies with a closed 3-manifold.

(2) If K is a closed nonorientable surface then K c M is a one-sided partial

Heegaard surface in M if M — K is the connected sum of an open handlebody with a

closed 3-manifold.

Remarks. By Kneser [9] and Milnor [13], any closed orientable M3 can be

uniquely expressed as a finite connected sum of prime 3-manifolds. (A closed

orientable 3-manifold Q is prime if either Q = S2 X Sl or any embedded S2 in Q

bounds a 3-cell.) Hence, if L is a separating partial Heegaard surface, then M has a

prime factorization M = Mx# ■ ■ ■ # Mk + r+s where L can be viewed as a Heegaard

surface for M, # ••■ #Mk, Mk + l# ■■■ #Mk + r lies on one side of L and

Mk + r+l# ■ ■ ■ #Mk + r+s is on the other side. Similarly, if L is nonseparating, M

has a prime decomposition M = Ml # ■ ■ ■ # Mk + r #S2 X Sl where L is a Heegaard

surface for Mx # • • • #Mk and the S2 X S1 factor arises by forming a connected

sum of the two open handlebodies which are the components of M, # • • • # Mk. —
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L. The other factors Mk + 1,.. .,Mk + r all miss L. Finally if K is a one-sided partial

Heegaard surface in M, then M = M, # • • • # Mk + r where each M, is prime, A is a

one-sided Heegaard surface for M, # • • • # Mk and the other factors Mk + i, for

1 < i <' r, are all disjoint from A.

Definition. A closed surface L c M of genus > 0 is called incompressible if there

is no disk D a M with Z) n L = 3Z> a noncontractible loop on L. A 2-sphere S a M

is incompressible if 5 does not bound a 3-cell in M.

2. Suppose A" is a closed nonorientable surface embedded in a closed orientable

3-manifold M. We will construct various double coverings M of M for which the

preimage K of A in M is orientable. Let M - N(K) U F, where A/(A) is a small

closed regular neighbourhood of A and F = M - int A/( A" ). Let K be the orientable

double covering of A and let Y be any double covering of Y such that 3 F is

disconnected. We allow the possibility that Y itself is disconnected and, in this case,

Y is the disjoint union of two copies of Y. Note that a connected double covering Y

of Y exists if and only if the map ZZ,(A, Z2) -» HX(M, Z2) induced by inclusion is

not onto. There is a double covering of N( A ) by K x [-1,1] with the preimage of A

equal to À X {0}, since N(K) is a twisted line bundle over A.

The double covering M is obtained by gluing ¿ X [-1,1] to f by a diffeomor-

phism \p: A X {-1,1} -* 3F. i> is chosen so that the double covering projections

KX [-1,1] -> A/(A)and Y-> Y match up. So we obtain M = Kx [-1,1] u ^Fand

there is a double covering/;: M -* M with/>_1(A) = K X {0}.

3. Theorem 4. Suppose M is a closed orientable Riemannian 3-manifold. Assume

that the scalar curvature is positive, or if M admits no flat metric then it suffices to

suppose that the scalar curvature is nonnegative. If L c M is minimal then L is a

partial Heegaard surface for M.

Proof. This will follow by applying Theorem 3 to M split along L. Firstly, if L is

orientable and nonseparating, we obtain a connected compact manifold Mx with two

copies of L in 3M,, by dividing M along L. If L separates M, two compact manifolds

M2 and M3 are constructed with 3M2 and 3M3 both a copy of L, by splitting M

along L. Finally, if L is nonorientable, let p: M -* M be the double covering

constructed in §2, where M = L X [-1,1] U ^Y and Y is disconnected. Let Yx, Y2 be

the components of Y with 3F, = \p(L X {-I}). The compact manifold A/4 C M

given by M4 = L X [-1,0] U F, satisfies dM4, is a copy of ¿ and p maps int M4

diffeomorphically onto M — L.

By Theorem 3, there are no subgroups of irx(M¡) of the form ttx(J), where J is a

closed orientable surface of positive genus and 1 < i < 4. Note that if M is assumed

only to have a metric of nonnegative scalar curvature, then as in [17] the metric can

be approximated by one with positive scalar curvature (since M admits no flat

metric) and Theorem 3 applies.

To complete the proof we apply Dehn's lemma and the Loop theorem to the

surfaces 3A/;, for 1 < / < 4. Suppose G is a component of 3AZ, and {Du: 1 < u < v)

is a maximal family of disjoint compressing disks for G, i.e. 3D„ c G, int Du c int M¡,
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3Z>U is noncontractible in G for all u and no two curves dDu and 3Z)„ are parallel on

G, for u ¥= w. Let N = N(\JUDU U G) be a small closed regular neighbourhood in

M;. If some component J of dN - G has genus > 0, then since ttx(J) c 7r,(A/,-) (by

Dehn's lemma and the Loop theorem) we get a contradiction to Theorem 3. So dN

consists of G together with 2-spheres. It follows immediately that M2, M3 and M4 are

all connected sums of a handlebody (N with cells attached along the 2-spheres in

dN) with a closed 3-manifold. Similarly, Mx is a connected sum of two handlebodies

with a closed 3-manifold, and so L is a partial Heegaard surface in all cases.

Remarks. (1) In the case that M3 = #,'1,S2 X S1, Theorem 4 gives the results in

§10 of [12]. By results of Haken [7] and Waldhausen [19], any two orientable partial

Heegaard surfaces of the same genus in #"=lS2 X Sl are equivalent if they are both

separating or both nonseparating and if there are the same numbers of S2 X S1

factors in the components of the complements of the surfaces (cf. [12, §10] also).

(2) Engmann [4] and Birman [1] have given examples of two Heegaard surfaces of

genus 2 in a connected sum of lens spaces L(p, q)#L(p', q') which are not

equivalent. On the other hand, Bonahon and Otal [3] have recently shown that any

two Heegaard surfaces with the same genus in any lens space L(p, q) are equivalent.

4. Theorem 5. Suppose M is a closed orientable Riemannian 3-manifold with no

orientable incompressible surfaces of genus > 0. Z/ZZ,( A/. Z) has 2-torsion then M has

an embedded minimal nonorientable surface which is a one-sided partial Heegaard

surface. Consequently, there are double covers M of M with orientable minimal partial

Heegaard surfaces.

Proof. Since HX(M,Z) has 2-torsion, we can choose a torsion element a e

HX(M, Z) such that a ® 1 * 0 in HX(M, Z) ® Z2. Exactly as in [14], a nonorienta-

ble incompressible surface A c M can be found so that the intersection number

mod 2 of the class of A in H2(M, Z2) and a is one. Moreover, A is a one-sided

partial Heegaard surface for M, because there are no orientable incompressible

surfaces in M other than 2-spheres. (In [14] it is proved that A is a one-sided

Heegaard surface if M is irreducible. Clearly the same argument works here.) By [12]

there is a stable minimal incompressible surface A' c M, with K' homeomorphic to

A. A' is also a partial Heegaard surface in M. The preimage A' of A' in a double

cover M of M, as constructed in §2, is then an orientable minimal partial Heegaard

surface for M. This completes the proof.

Examples. (1) The above hypotheses are satisfied by a finite connected sum

M = Ml# ■ • ■ # Mk, where each M, is either a copy of S2 X Sl or w,(M,) is finite

and at least one irx(M¡) is even, solvable and not generalised binary tetrahedral by

cyclic.

(2) Let M = L(4,1) # S2 X S1 with any Riemannian metric. Now L(4,1) has an

incompressible Klein bottle A (see [14]) which can be minimally embedded in M, as

in Theorem 5. M has two double coverings, Mx = RP3 #S2 X S[ and M2 =

RP3 #S2 X Sl #S2 X S\ in which A is covered by a minimal torus À (cf. §2). In

the former, the torus is nonseparating, while in the latter case, it is a separating

surface. So we obtain all three types of partial Heegaard surfaces realized by

minimal surfaces.



462 J. H. RUBINSTEIN

(3) All the lens spaces L(2p, q) have embedded incompressible nonorientable

surfaces A (cf. [2 and 14] for properties of these surfaces). As in Theorem 5, A can be

chosen to be minimal and lifts to minimal Heegaard surfaces in both L(p, q) and

S3. For example, with the standard spherical metric on L(2p, q) this produces many

new embedded minimal surfaces in S3, as compared with Lawson's constructions in

[10]. See also [15] for a related procedure for finding minimal surfaces, based on an

equivariant version of [12].

Note added in proof. Similar results have been obtained by S. Almeida, Ph. D.

Thesis, State University of New York, Stony Brook (December 1982).
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