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FOLD SINGULARITIES IN PSEUDO RIEMANNIAN

GEODESIC TUBES

MAREK KOSSOWSKI

Abstract. For a general submanifold of a pseudo Riemannian manifold, the

exponential mapping of the orthogonal bundle into the ambient manifold may fail to

be a diffeomorphism on the zero section. Here we show that differential geometric

information intrinsic to the submanifold determines when this map has a fold

singularity.

Throughout this paper /': N -* (M, ( )) will denote a C00 immersion of smooth

manifolds of dimension « and m, respectively. M will come equipped with a smooth

nondegenerate geodesically complete pseudo Riemannian metric. If N± denotes the

orthogonal bundle over N, A/1- = {vq& TqM\i(p) = q, vq ± i*(TpN)}, then the

geodesic tube map /: N1, -» M is defined by v -* e\pHp)v. If (M, ( >) is Riemannian

(i.e. ( ) is positive definite), then / is a local diffeomorphism on a neighborhood of

any point on the zero section of A7± . If ( M, ( )) is not definite this is not always the

case. In particular, if Npx n TpN is a non trivial vector space then it is clear that (/')„

cannot have full rank ato^eJV1. The purpose of this paper is to show that in the

case where NJ- n T N is one-dimensional the intrinsic geometry of N (i.e. invariants

associated with (N, i*( ))) determine when the geodesic tube map has a simple fold

singularity at op (i.e. aS10 singularity; see Golubitsky and Guillemin, p. 87). The

author encountered this phenomena in a geometric study of a special class of first

order partial differential equations. There it is used to determine certain qualitative

features of solutions.

One may pose the problem of describing how the geometry of /: N -> (M, ( ))

determines the structure of more complicated singularities in the geodesic tube map.

Aside from shedding light upon some of the finer features of pseudo Riemannian

geometry, the resolution of this matter would be of use in the study of the

aforementioned first order partial differential equations. The author wishes to

express thanks to R. Bryant, J. Damon, P. Eberlein, R. B. Gardner, M. Schlessinger

and G. Thompson for inspiration.

Our program is as follows. Because Npx n TpN # 0 implies that i*( )p is a

degenerate bilinear form we begin by adapting the classical connection construction

to such a setting. This is the dual connection. At a point p where ;*( > is degenerate

the dual connection is used to define a conformai structure on T N. We show that

this conformai structure determines when the degeneracy of i*( ) satisfies two
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transversality conditions. We then show that if these conditions are satisfied at p

then the geodesic tube map has a fold singularity at op. (The reader may wish to

consult the addendum to review the notion of fold singularity.) We close with a

simple example.

Given a smooth manifold N with p g N let CX(N), VX(N), Fr(N) denote the

collections of smooth functions, vector fields and r-forms on N. The subscript p will

denote the germs of such objects at p. Jt'p(N) c Cpx(N) will denote the maximal

ideal of germs of functions which vanish at p, and ©2 T*N will denote the

symmetric (0, 2) tensor bundle over N. We have dscrm: ©2 T*N -* R mod R* which

assigns to a point in a fiber its discriminant. (Recall the discriminant of a symmetric

bilinear form vanishes iff the bilinear form degenerates.) Keeping (A/, /'*( )) in mind

we define a manifold with metric to be a pair (N,( )) where ( ) is any Cx section of

©2T*N. (N,( >) is singular at p g N if dscrm °( ) m Q. It is known that

dscrm"'(0) c ©~ T*N is smoothly stratified according to type (r, s ) where r + s < n.

Recall that a symmetric bilinear form is of type (r, s) if it is of rank r + s, and

admits positive and negative definite subspaces of dimensions r and s, respectively.

If ( >: N -» ©2 T*N has nonempty transverse intersection with the stratum of type

(r, s), r + s < n, at p G N we will say (N, ( )) has a transverse metric singularity at p

and write ( N, ( ))& S(r, s). The codimension of the singularity is the codimension of

the (r, s) stratum in ©2 T*N. In this paper we will consider only metric singularities

of codimension one. If such a singularity is transverse the locus of points S at which

the metric is singular is a smooth submanifold of dimension « - 1. The following

serves as a local characterization of such metric singularities.

Proposition 1. Given (N,( » with ( )p of type (r,s), r + s = « - 1, then

(N, ( ))rhpS(r, s) iff, for some Cx frame ev... ,en 6 Vp°°(N), </(det<e„ e,», # 0.

Proof. Omitted.

Given such a metric singularity we have two subspaces of TpN, namely the

tangent space to the manifold of singular points TpS and the one-dimensional

subspace Rad^ which is orthogonal to all of TpN. If these subspaces split TpN we say

the metric singularity is radical transverse at p. Let us see how these transversality

conditions are geometrically encoded in (N, ( )).

Now let (TV, ( )) be a smooth manifold with ( ) any smooth symmetric (0,2)

tensor.

Definition 1. Given (N,( », a C00 dual connection on N is a map

□ : K°°(/V) X VX(N) -* Fl(N),

X, Y ^ UXY,x

which satisfies

(a) D is R bilinear,

(b) for all/G C°°(JV) and X, F g Vx(N),

(i)afXY = faxY,

(2)nxfY=X(f)(Y,)+fOxY,
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the torsion of D is the (0,3) tensor

Tor( X, Y,Z) = UXY(Z) -UYX(Z) - ([X, Y], Z>;

here UXY(Z) denotes the pairing of the 1-form OxY with the vector field Z. D is

compatible with ( ) if

x(Y,z) = axY(z) + nxz(Y).

Lemma 2. Given (N,( » there exists a unique torsion free dual connection which is

compatible.

Proof. As in the classical case we use the relations of compatibility and Tor = 0

to write

(*) 2DXY(Z) = X(Y, Z> + Y(Z, X) - Z(X, Y)

+ ([X, Y], Z> - ([X, Z], F> - <[F, Z], X).

One then shows that this object satisfies (a) and (b).

Observe that if ( ) is nondegenerate then Dx Y(Z) = (vx Y, Z), where V is the

classical Levi-Civita connection.

Now let Rp g Rad, and Xp, Yp g TpN and set II^CA", Y, R) = OxY(R).

Proposition 3. (a) II, is a tensor on TpN x TpN X Rad,,

(b)llp(X,Y,R)=l\p(Y,X,R).

Proof, (a) Observe Dx fY(R) = X(f )(Y, R)p + faXp Y(R) and (Y, R)p = 0.

(b) Observe 0 = (R,[X, Y])p = D* Y(R) - DV/ X(R).

Because there is no natural choice of Rp c Rad, we view II ( , , R) as a

conformai structure on TpN, the intrinsic conformai structure of a metric singularity.

The two transversality conditions on a metric singularity are encoded in II, as

follows.

Proposition 4. Given (N,( » with ( > of type (r, s), r + s = n — 1, let Rp g

Rad,; then(N,( » rh pS(r, s) if and only if there exists Xp g TpN with\lp(X, R, R)

+ 0. Further, the radical is transverse if and only ifllp(R, R, R) ¥= 0.

Proof. Choose a local frame ex,...,e„ g Vpx(N) such that

(1 0 0\

{e„ej)p

1

0

,0 0/

so that we may assume en(p) = Rp. It follows that

det«e„ «,»=<«„,O     mod J(2p(N).
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Thus by Proposition 1, (N, ( » rh pS(r, s) if and only if there exists X g T N such

that 0 # X(e„, e„)\p = 2UX e„(e„) = 2Up(X, R, R). In this case, TpS is just the

kernel of the 1-form d((en, en))p G T N*. So the radical is transverse if and only if

0*R(ett,e„)\p = llp(R,R,R).
Of central interest in this paper is the case where we are given /': N -* (M,{ ))

with (M, ( )) nondefinite, «o«singular and (N,i*( )) rU S(r, s). The following

provides some geometric intuition for II, in this setting.

Proposition 5. Given i: N-*(M,( » as above, let V denote the classical

Levi-Civita connection for (M, ( >) (recall (M,( )) is assumed to be nondegenerate),

and let NU denote the dual connection of (N, /'*( >). If Y G VX(M) is a vector field

everywhere tangent to N and ifX , Z, G T N then

NnxY(Z)=(vxY,Z)l(p).

Proof. Let X, Y, Z g Vx(M) be vector fields everywhere tangent to M. So there

exist X, Y, Z G VX(N) which are /-related to X, Y, Z, respectively. Recalling that

[X,Y] = [X, Y] on N, relation (*) implies the result.

Now since T N D (TpN)±= Rad, we see that II, is just a fragment of the

classical second fundamental form which, due to the peculiarities of nondefinite

geometry, is intrinsic to (N, i*( ». We now prove the central result of the paper.

The reader may wish to consult the addendum to review the notion of fold

singularity.

Theorem 6. Let i: N -* (M,( », i(p)= q be a codimension k immersion with

(N, /*( )) i+i pS(r, s) of codimension 1 and transverse radical, then i: N1- -» M has a

fold singularity at o .

Proof. We first deal with the case where N is a hypersurface (i.e. fc ■= 1). We may

choose a basis of TqM so that in the associated exponential coordinates zx,...,zm for

M we have

(1) i + T N = spa.n(dzx, ■ i).

(2) mod © m(m+l)/2 \J*l(TqM)\,

(1

<3z,,3zy>,

0
1

0)

In these coordinates i has the representative

i: (R""-1^) -> (Rm,0),

(xx,...,xm_2,y) -* {xu...,xm_2, y,f(xx,...,xm_2, y))
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with partíais fx and f G JÍ0(Rm 1). Thus in the above coordinate frame /*( ) is

represented by h:j where, modulo © [J(l(W~1)},

( ! o    y \

1

fx, ' '       /*„_, 1fy ,

Noting that dy spans the radical at/7 we compute Up(dy, dy, dy) as

Vdypdy(dy) = \dy(i*(dy,dy))o=fvv(0).

We see that both hypotheses are satisfied if and only if/vv,(0) # 0 (see Proposition

4).

Now we may describe an orthogonal vector field R in the 3z, frame as

(a,,... ,am_2, b — 1, c) where a„ ¿> and c G ^'0(R'""1). Since Rq = i*dy, we com-

pute using Proposition 5 that

n*y,3y(ty) - -<,W»aj'r *>, = <v,.„/t, ù3>0, = c,(o).

(Recall that V8z   3zy = 0 since we are in exp coordinates.) Thus cv(0) = /,,,,(0) # 0.

Recall that relative to the induced coordinates on TM the map

e: TM —> M
v* -*, expx v

has e » | o given by the matrix (Id |Id)

u* *» exP* v

(see Milnor, p.  58). Now observe that we may write i as the composite N1-
T e

^-» TM -» M, where y is represented by

./:Rm,0-R2m, (0,0),       (*,**&) -» (x,,y,f,X(a,,b- l,c)),

relative to the above coordinates. It follows that, modulo ®m(J(l(Rm)), i is

equivalent to

(**) (xl + Xq„y-X + Xb + X2b,f+Xc).

Now the kernel of /'*|0 is spanned by 9>> + 3A|o and the image of /„|0 is the

tangent space to N at p. So if we set y(t) = (0,... ,0, /, /) the intrinsic derivative at

o, will be surjective if and only if (d2/d2t)i(y(t))\l=0 does not lie in the image of

i * I   . But this is the same condition as

0 # < (d2/d2l)l(y(t))\l=0, Rp) = (d2/d2t)f(y(t)) + /c(y(/))U

However, by the above, this is 3/vv(0) =£ 0.
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We now show that the kernel of ;*l , is transverse to the singular locus. Viewing
P

i„ as a map from R"' to Hom(R"', Rm) we use (**) to write

/* * \

1 - Xby

fy + K
-1 + b + 2Xb

c

mode"'2(^2(R'")).

Since

<*\<>r

'Id

0

I

-1

o /
we have that

det(/„) = (/ + Xcv + c)   mod J?20(Rm).

Because the kernel of (d(del(i+)\o )) g T^N-1) identifies with the tangent space to

the singular locus of /', we see that the pairing of ker/„ and d(det(im)) at o, is

(dy + dX)(fy + cy + c)0 # 0.

We deal with the higher codimension case k > 1 by enlarging matters to the above

hypersurface setting. Choose a smooth local foliation of N so that the leaf at p

corresponds to the singular locus S. At each point of N sufficiently near p the leaves

inherit a nondegenerate metric (recall Rad is transverse). Thus near p in N we may

modify the Gram-Schmidt algorithm to decompose the tangent space to M as

TLeaf e R © Q © P where

(1) (TTeafV = R © Q © P,
(2) P is of dimension k — 1, nondegenerate, and orthogonal to R © Q,

(3) R = Rad over 5,

(4) R © Q is a type (1,1) 2-plane bundle in TM.

Thus P is a rank k - 1 vector bundle over a neighborhood U of p in N, which is

contained in Nx over U. Now the map ;ext: P -* M defined by wx -» exp,(x) w is an

immersion at op. Since (iext)mT0P = TpS © Rad, ©P, we see that (P, i*x(( » is

1 and its radical at o  agrees with Radmetrically singular at o with r + s = m

It is easy to see that

Pll0p{R, R, R) = H,(Zv, R, R) * 0.

Further, by construction the two geodesic tube maps, i and (;'ext) agree over the

neighborhood Uofp. Thus, by the above k = 1 result, we are finished.

Example. We will illustrate the above proposition in a simple and readily

visualized setting; namely, where « = 1, m = 2 and the ambient metric is flat.

Consider

i:R R2><> = /-» (t,tr/r),

where r = 2, or 3. We have /*( )

we have

2/r  * dt© dt, so that if we set dt = R at 0, then

II(Ä,Ä,Ä)0-e3/<ar,8i>o..
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Hence the metric singularity is transverse and radical transverse only when r = 2.

Further,/: Rx=RxR-» R2 is given by /, X -> (t,tr/r) + X(l, -/r  ')and

r,        I 1 1(')* - trl -X(r-l)tr-2 -f-1

Hence det(/)* is given by X - 2/ if r = 2 and by 2\/ - 2/2 if r = 3. ker(/)*100 is

given by 9/ - dX in both cases. Thus,/^) is transverse to XS only when r = 2. We

may visualize the r = 2 case, as below.

1

Fibers J

Addendum: Fold singularities. Let g: (Rm, 0) -» (Rm, 0) be the germ of a smooth

map and let XS -* Jl(Rm, Rm) denote the codimension one submanifold of jets with

rank one less than maximal, g has a fold at 0 if/g is transverse to ¡S at 0. And the

fold locus (j1g)~l(1S) is transverse to the kernel of (g*)0 in T0H.m. Recall that the

first transversality condition may be stated as the surjectivity of the intrinsic

derivative D(g*)0: T0Rm -» Hom(ker(gi(1)0, coker(g*)0). In the case at hand, both

the ker and coker are one-dimensional. Thus this condition will be satisfied if we can

find a smooth curve y: (-e, e) -> (Rm,0) such that y(0) spans ker(g*) and

(d2/d2t)g(y(t))\t_0 does not lie in the image of (g*)0 (i.e. Dg*(kerg*) * 0).

Up to the action of Diff¿°(Rm) X Diff¿°(Rm) a fold singularity has the germ

R'",0-R"',0,(io1,...,Wm)-(Wl,...,iom_1,W2)

as a representative.
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