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A CHARACTERIZATION OF CLOSED IMAGES

OF METRIC SPACES

L. FOGED

Abstract. We prove that a regular topological space is the image of a metric space

under a closed mapping if and only if it is a Fréchet space with a o-hereditarily

closure-preserving ^-network.

An internal characterization for topological spaces which are images of metric

spaces under closed continuous functions, popularly called Lasnev spaces, has been

given by Lasnev [6], Here we present another characterization in terms of the

/c-networks introduced implicitly by Michael [8]: A collection 5a of closed subsets of

a topological space X is said to be a k-network for X if, given any open set U and any

compact set K c U, there is a finite subcollection ^* of ^so that ícU^*c U.

A family {Aa: a G /} of subsets of a space X is said to be hereditarily closure-

preserving if

U   B~a = ~ÜX
aej ore/

whenever J cz I and Ba c Aa for each a e J. A a-hereditarily closure-preserving

collection is a collection that is the union of countably many hereditarily closure-

preserving families.

A topological space X is a Fréchet space if, for every A c X, we have A = {x e X:

x is the limit of a convergent sequence in A}. All spaces are Hausdorff.

Our result is the following

Theorem 1. A Hausdorff space X is a Lásnev space if and only if X is a Fréchet

space with a (¡-hereditarily closure-preserving k-network.

Proof of the necessity. It is known that closed mappings preserve the Fréchet

property [1]. Let M be a metric space,/: M -* X a closed, continuous surjection, and

31 a a-discrete base for M. Then one easily verifies that {f(B): B e 3$) is

a-hereditarily closure-preserving and, since every compact subset of X is the image

under / of a compact subset of M [7, Corollary 1.2], that {f(B): B e 38} is a

^-network for X.

Before continuing with the proof of the sufficiency, we remark that if one removes

the requirement that /c-networks consist of closed sets, then a Lasnev space X has a

^-network which is the union of countably many hereditarily closure-

preserving and point-finite collections. Indeed, let 0> = ^„^fi3'n be a a-hereditarily
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closure-preserving /c-network of closed sets, and let Dn = {x g X: ¿Pn is not locally

finite at x}. Then Dn is closed and discrete, for if {xk: k g N} c Dn then, because

3dn is not point-finite at xk, we can inductively choose Pk G 0>n \ { P.; / < &} so that

xk g PA. The hereditarily closure-preserving property implies that [xk: k g N} is

closed and thus, as A" is Fréchet, that £>„ is closed and discrete. It is now easy to see

that @¿ = { P\D„: P g 3dn} u {{x}: x g D„} is point-finite, hereditarily closure-

preserving and that U^n^,,' satisfies the k-network property. This answers a

question of [5].

Lemma 2. // 01 is a hereditarily closure-preserving family of closed subsets of a

Fréchet space X, then the collection {C\3i*: 3f* is a finite subfamily of 01} is also

hereditarily closure-preserving.

Proof. If not, there is a collection {3ïa: a g /} of finite subfamilies of 31 and

Ga c C\0¿afor a G / so that Uae/Ga is not closed. Consequently one can find a

sequence (z„: n g N} converging to an x G X\\Jae,Ga. We take a(n) g / so that

zn g Ga(n) and, by choosing a subsequence, we may assume that the a(nfs are

distinct. It is possible to select an infinite {n(m): m G N} c Nso that

A-<m

Picking Äm e ^a(B(m))\UÄ<m^«(„(t)) makes the P„,'s distinct, and thus the fact

that z„(m) g Rm, taken with the hereditarily closure-preserving property of 3t,

contradicts the convergence of {zn(m): m G N}.

Lemma 3 [6]. If 3? is a hereditarily closure-preserving family in a space X and {zn:

n g N} is a sequence in X\ {x} converging to x, then there is an M g N so that (z„:

n > M} n R ¥= 0 for only finitely many R g 3t.

Lemma 4. Let X be a Fréchet space with a a-hereditarily closure-preserving k-net-

work &> = UneN^ with 3*m c 0>m + l. If U is an open set and Z = (z„: n G N} a

sequence converging to x G U\Z, then there is an N G N so that Z is eventually in

intU{P e3*N:P <z U}.

Proof. For each m g N, let 3** = {P g 9m: P c Í/}. If no N g N satisfies the

conclusion of Lemma 4, then we may select a subsequence {zn(m): m g N} so that

zu(m) e U\int\J3¿*. Because X is Fréchet, there is a sequence {z^(m): k g N} in

i/\U^ converging to zn{m). Now x g |z*(m): w, /c g nJ, so using the Fréchet

property, the hypothesis that x G Z, and the Hausdorff property we can choose a

sequence Z' of the form [z^^U)):j G N}, with m(j) < m(j + 1), that converges to

x. Then there is an M g N so that Z' is eventually in U 3¿^l; yet if m(j) > M our

definitions give z¡¡$(J)) g A'XUá3^, a contradiction. So indeed Z is eventually in

intUá3^, for some ]VeN.

Proposition 5. ^4 Fréchet space X with a a-hereditarily closure-preserving k-

network 3*> = ^n(=N3en is a Lasnev space.

Proof. We assume that 3dn c &n+1 and, by Lemma 2, that each @n is closed under

finite intersections. For Pe#nwe define

Rn(P) = P\ini\J{Q ^ 3*n: P £ Q}
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and

Claim 5.1. Suppose Z = (z„: n G N} converges to x g A'X Z and TV g N. Let

3t* = {P. g ^y: finZis infinite}. If U is an open neighborhood of x and Z is

eventually in intU {P g ^V P c {/}, then Z is eventually in intUá?* and Uá?*c

Proof. By Lemma 3, we can find M large enough that {z„: n > M} c F, where

F= intU^vALKô e^Ul^Ön Z is finite}.

We show that V c U á?*. If v- g V, theny g £> g 3*n implies Q n Z is infinite; thus

Lemma 3 gives that 3s N is point-finite at y so that P( y ) = fl{ g g a% : y g 0} g 0>n.

Moreover, y g X\U{ô g 5a v: P(y) ig}, sove RN(P(y)). Because y g K, we

haveP,v(P(>>)) n Z is infinite, yielding y g RN(P(y)) c U ^*, as desired.

To see that \J3t* a U, note that if ÄW(P) g 3f*, then RN(P)cz P a Q for some

Q e 0>N such that Q c U: otherwise Z is eventually in intU {Q G ^: £> c U} c

intU{g g ^V Peö}c -YXP^P), contradicting that Z n P¿v(P) is infinite.

This establishes Claim 5.1.

For each« g N, let ^ = 3tn U { X\intl)3in} = {Ra: a g /„}. Let us say that a

collection ^"of subsets of X forms a net at x g X if x g CVTand every neighbor-

hood of x contains a member of JT. Now let

M = l a g  ]!/„:{ Ra(n): n g N} forms a net at some x g X \

and give M the subspace topology inherited from the usual product topology of the

discrete spaces /„. We define/: M -* X by/(a) = x if and only if {Ra(n): n g N}

forms a net at x.

Claim 5.2. f[M] = X.

Proof. If x is an isolated point, then {x} g @n for some n, and P„({x}) = {x}.

If x is not isolated, let Z be a sequence in X\ {x} converging to x. For each n g N,

pick an Ra(n) g 3in so that Ra(n) O Z is infinite if it is possible to do so. If it is

impossible, let P0(n) = X\int[J3?n. In any case, x G Ra,n) by Lemma 3. Then by

Lemma 4 and Claim 5.1, {Rn(n): n g N} forms a net at x.

Claim 5.3./is continuous.

Proof. Let Í/ be open in X, x g (/, and a g /~'(x). Necessarily there is an n g N

so thatP0(,?) c U and thus/[{r £M:t[ n = of n)]c Po(n) c £/.

Claim 5.4./is closed.

Proof. Suppose F is a closed subset of M and Z = {z„: n g N} is a sequence in

/(F) converging to x g A"\Z. For each n g N, select a a„ g Fn/_1(z„). Let

S0 = N, and for every w G N we inductively choose an infinite SB1cSm_1 and

t(w) G /m as follows.

By Lemma 3, find an M g N so that 3t* = {R g á?¿: P n Z is infinite} = {R g

á?¿,: P n (z„: « > M} # 0} is finite. So for n ^ M, R„iAm) g ^*; as a result there

is an infinite Sm c 5m_, so that the an(m)'s (n g 5m) coincide, say r(m) = an(m)

for all n G S„.
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We show that the t g íimeN/m thus chosen is in / 1(x). Since for each m g N,

zn G Rc„(m) = Rr(m) for a11 " G Sm, we have x g nmeNÄT(m). If U is an open set

with x G U, then Lemma 4 and Claim 5.1 produce an N G N so that RT(N) g 3tN

and PT(Ai) c £/. Thus/(T) = x.

If we pick n(m) g Sm, n(m) < n(m + 1) for each m G N, then {a„(m): m g N}

converges to t. Indeed, if m ^ k, then «(w) g S¿, so an(m)(k) = r(k). Thus t g P,

x g /(F), and/(F) is closed.

We give a new proof for the following unpublished result.

Corollary 6 [Guthrie]. A Hausdorff space is metrizable if and only if it is first

countable and has a a-hereditarily closure-preserving k-network.

Proof. By a theorem of Morita, Hanai [9] and Stone [11], a first countable Lasnev

space is metrizable.

Corollary 7 [10]. A Hausdorff space is metrizable if and only if it is first countable

and has a a-locally finite k-network.

Corollary 8 [2]. A regular space is metrizable if and only if it has a a-hereditarily

closure-preserving base.

Proof. By [2, Lemma 4] a space with a a-hereditarily closure-preserving base is

first countable.

The next corollary answers a question of [12].

Corollary 9. A Hausdorff Fréchet space with a countable k-network is a Lasnev

space.

Lasnev [6] characterized closed images of metric spaces as F, Fréchet spaces with

an almost refining sequence of hereditarily closure-preserving coverings comprising a

network for the space. (See [6] for the definition.) Although Lasnev's proof and that

which we have given here are quite similar, the two characterizations are different.

Lasnev's proof of the sufficiency works if "Fréchet space" is replaced by "/c-space,"

while there is a regular /V-space with a a-discrete ^-network which is not normal [3].
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