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A CHARACTERIZATION OF CLOSED IMAGES
OF METRIC SPACES

L. FOGED

ABSTRACT. We prove that a regular topological space is the image of a metric space
under a closed mapping if and only if it is a Fréchet space with a o-hereditarily
closure-preserving k-network.

An internal characterization for topological spaces which are images of metric
spaces under closed continuous functions, popularly called Lasnev spaces, has been
given by La3nev [6]. Here we present another characterization in terms of the
k-networks introduced implicitly by Michael [8]: A collection £ of closed subsets of
a topological space X is said to be a k-network for X if, given any open set U and any
compact set K C U, there is a finite subcollection #* of #so that K ¢ U #* c U.

A family {A,: a € I} of subsets of a space X is said to be hereditarily closure-
preserving if

U B.= UB,

ae] aeJ
whenever J € I and B, C A, for each a« € J. A o-hereditarily closure-preserving
collection is a collection that is the union of countably many hereditarily closure-
preserving families.

A topological space X is a Fréchet space if, for every 4 C X, we have 4 = {x € X:
x is the limit of a convergent sequence in A }. All spaces are Hausdorff.

Our result is the following

THEOREM 1. A Hausdorff space X is a La3nev space if and only if X is a Fréchet
space with a o-hereditarily closure-preserving k-network.

PROOF OF THE NECESSITY. It is known that closed mappings preserve the Fréchet
property [1]. Let M be a metric space, f: M — X a closed, continuous surjection, and
% a o-discrete base for M. Then one easily verifies that { f(B): B € &)} is
o-hereditarily closure-preserving and, since every compact subset of X is the image
under f of a compact subset of M [7, Corollary 1.2], that { f(B): B € &)} is a
k-network for X.

Before continuing with the proof of the sufficiency, we remark that if one removes
the requirement that k-networks consist of closed sets, then a La¥nev space X has a
k-network which is the union of countably many hereditarily closure-
preserving and point-finite collections. Indeed, let £ = U, %, be a o-hereditarily
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closure-preserving k-network of closed sets, and let D, = {x € X: £, is not locally
finite at x }. Then D, is closed and discrete, for if {x,: kK € N} C D, then, because
&, is not point-finite at x,, we can inductively choose P, € #,\ { P;:j < k} so that
x, € P,. The hereditarily closure-preserving property implies that {x,: kK € N} is
closed and thus, as X is Fréchet, that D, is closed and discrete. It is now easy to see
that Z/ = (P\ D, P € #,} U {{x}: x € D,} is point-finite, hereditarily closure-
preserving and that U, %, satisfies the k-network property. This answers a
question of [5].

LEMMA 2. If R is a hereditarily closure-preserving family of closed subsets of a
Fréchet space X, then the collection {\ R*: R* is a finite subfamily of R} is also
hereditarily closure-preserving.

ProOOF. If not, there is a collection {#,: a € I} of finite subfamilies of # and
G, C NA, for a € I so that U,,G, is not closed. Consequently one can find a
sequence {z,: n € N} converging to an x € X\ U,,G,. We take a(n) € I so that
z, € G,,, and, by choosing a subsequence, we may assume that the a(n)’s are
distinct. It is possible to select an infinite { n(m): m € N} C N so that

‘@a(n(m))\ U ‘@a(n(k)) * 2.
k<m
Picking R,, € Zy(nimy \Uk<mPanx) makes the R ’s distinct, and thus the fact
that z, .., € R,, taken with the hereditarily closure-preserving property of %,
contradicts the convergence of { z,,,,): m € N}.

m®

LEMMA 3 [6). If # is a hereditarily closure-preserving family in a space X and { z,;
n € N} is a sequence in X \ {x} converging to x, then there is an M € N so that {z,:
n> M} NR+ @ foronly finitely many R € .

LEMMA 4. Let X be a Fréchet space with a o-hereditarily closure-preserving k-net-
work #=U,, NP, With P, C P, ... If U is an open set and Z = {z,: n € N} a
sequence converging to x € U\ Z, then there is an N € N so that Z is eventually in
int{PeP,:PcU).

PROOF. Foreachm e N, let ¥ = (P e #,: PC U}. If no N € N satisfies the
conclusion of Lemma 4, then we may select a subsequence {z,,,,: m € N} so that
Z,om € U\ intU2x. Because X is Fréchet, there is a sequence {z,,,: kK € N} in
U\UZpx converging to z,,,,. Now x € {z,’,‘(m): m, k € N}, so using the Fréchet
property, the hypothesis that x € Z, and the Hausdorff property we can choose a
sequence Z’ of the form {z;{) ;: j € N}, with m(j) < m(j + 1), that converges to
x. Then there is an M € N so that Z’ is eventually in U 2%; yet if m(j) > M our
definitions give zx(7) ;) € X\ U2}, a contradiction. So indeed Z is eventually in
intU#%, for some N € N.

PROPOSITION 5. A Fréchet space X with a o-hereditarily closure-preserving k-
network P = U, .n%, is a Lasnev space.

PROOF. We assume that 2, C £, | and, by Lemma 2, that each £, is closed under
finite intersections. For P € &, we define

R, (P)=P\intlJ{Qe?: Pz Q)
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and
‘@n = {R"(P): P EQZ}'

CLAIM 5.1. Suppose Z = {z,: n € N} converges to x € X\ Z and N € N. Let
Z* = {R € Z,: RN Z is infinite}. If U is an open neighborhood of x and Z is
eventually in intU{P € #,: P C U}, then Z is eventually in intU%Z* and U #* C
U.

PrOOF. By Lemma 3, we can find M large enough that {z,: n > M} C V, where

V=intU2,\U{Q € 2, U Zy: 0 N Zis finite}.

We show that V c UZ*. If y € V, theny € Q € 2, implies Q N Z is infinite; thus
Lemma 3 gives that 2, is point-finite at y so that P(y) = {Q € Py € Q} € P,.
Moreover, y € X\U{Q € #,: P(y)Z Q}, so y € Ry(P(y)). Because y € V, we
have Ry (P(y)) N Z is infinite, yielding y € R (P(y)) C U #*, as desired.

To see that U #* C U, note that if R, (P) € #*, then Ry (P) C P C Q for some
Q € 2, such that Q C U: otherwise Z is eventually in intU{Q € #,: Qc U} C
intU{Q € #,: P& Q} C X\ Ry(P), contradicting that Z N R, (P) is infinite.
This establishes Claim 5.1.

Foreachn € N, letZ, = 2, U { X\ intUZ,} = {R,: a € I, }. Let us say that a
collection A" of subsets of X forms a net at x € X if x € (4 and every neighbor-
hood of x contains a member of A". Now let

M= {oe I 1,: {R,,: n €N} forms a net at some x € X}

neN

and give M the subspace topology inherited from the usual product topology of the
discrete spaces I,. We define f: M — X by f(¢) = x if and only if {R,,,: n € N}
forms a net at x.

CLamM 52, f[M] = X.

PROOF. If x is an isolated point, then {x} € &, for some n, and R, ({x}) = {x}.
If x is not isolated, let Z be a sequence in X \ { x} converging to x. For eachn € N,
pick an R, € %, so that R,,, N Z is infinite if it is possible to do so. If it is
impossible, let R, ,, = X\ intUZ,. In any case, x € R,,, by Lemma 3. Then by
Lemma 4 and Claim 5.1, { R, ,,,: n € N} forms a net at x.

CLAIM 5.3. fis continuous.

PROOF. Let U be open in X, x € U, and 6 € f ~!(x). Necessarily thereis an n € N
sothatR,,, C Uand thusf[{r€ M:7t n=0n}JcR,, c U

CLAIM 5.4. fis closed.

PROOF. Suppose F is a closed subset of M and Z = {z,: n € N} is a sequence in
f(F) converging to x € X\ Z. For each n € N, select a 9, € FN f7!(z,). Let
S, = N, and for every m € N we inductively choose an infinite S, C S,,_; and
7(m) € I, as follows.

By Lemma 3, find an M € N so that Z* = {R € #,: R N Z is infinite} = {R €
R, RN {z,:n>M}+ @} is finite. So forn > M, R € #*; as a result there

a(n)

o,(m)

is an infinite S,, C S, _, so that the o,(m)’s (n € S,,) coincide, say 7(m) = a,(m)
foralln € S,,.
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We show that the 7 € [1,,cn7,, thus chosen is in f ~!(x). Since for each m € N,
2, € R, ()= R, forall n € §,, we have x € N, cnR, () If Uis an open set
with x € U, then Lemma 4 and Claim 5.1 produce an N € N so that R, ,, € Zy
and R, y, C U. Thus f(7) = x.

If we pick n(m) € S,,, n(m) < n(m + 1) for each m € N, then {o,.,,,: m € N}
converges to 7. Indeed, if m > k, then n(m) € §;, s0 0,,,,(k) = 7(k). Thus 7 € F,
x € f(F), and f(F) is closed.

We give a new proof for the following unpublished result.

COROLLARY 6 [GUTHRIE). A Hausdorff space is metrizable if and only if it is first
countable and has a o-hereditarily closure-preserving k-network.

PROOF. By a theorem of Morita, Hanai [9] and Stone [11], a first countable La¥nev
space is metrizable.

COROLLARY 7 [10]. A Hausdorff space is metrizable if and only if it is first countable
and has a o-locally finite k-network.

COROLLARY 8 [2]. 4 regular space is metrizable if and only if it has a o-hereditarily
closure-preserving base.

PrROOF. By [2, Lemma 4] a space with a o-hereditarily closure-preserving base is
first countable.
The next corollary answers a question of [12].

COROLLARY 9. A Hausdorff Fréchet space with a countable k-network is a LaSnev
space.

Lasnev [6] characterized closed images of metric spaces as T; Fréchet spaces with
an almost refining sequence of hereditarily closure-preserving coverings comprising a
network for the space. (See [6] for the definition.) Although Lasnev’s proof and that
which we have given here are quite similar, the two characterizations are different.
Las$nev’s proof of the sufficiency works if “Fréchet space” is replaced by “k-space,”
while there is a regular k-space with a o-discrete k-network which is not normal [3].
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