SHORTER NOTES

The purpose of this department is to publish very short papers of unusually polished character, for which there is no other outlet.

A FORMALLY NORMAL OPERATOR HAVING NO NORMAL EXTENSION

KONRAD SCHMÜDGEN

ABSTRACT. We give an example of a formally normal operator N satisfying $\dim \mathcal{D}(N^*)/\mathcal{D}(N) = 1$ which has no normal extension in any larger Hilbert space.

For a linear operator T on a Hilbert space \mathscr{H} , we denote by $\mathscr{D}(T)$ its domain. A formally normal operator N on \mathscr{H} is a densely defined closed linear operator on \mathscr{H} such that $\mathscr{D}(N) \subseteq \mathscr{D}(N^*)$ and $||Nx|| = ||N^*x||$ for all $x \in \mathscr{D}(N)$. A normal operator is a formally normal operator N on \mathscr{H} satisfying $\mathscr{D}(N) = \mathscr{D}(N^*)$.

The first example of a formally normal operator N which has no normal extension in a larger Hilbert space is due to E. A. Coddington [1]. Coddington's example is minimal in the sense that dim $\mathcal{D}(N^*)/\mathcal{D}(N) = 1$. The aim of this note is to present a very simple example of that kind. For let S be the unilateral shift on the Hardy space $\mathcal{H} = H^2(\mathbb{T})$, and let $A := i(S + I)(S - I)^{-1}$. Set $B := S + S^*$.

PROPOSITION. The operator N := A + iB is a formally normal operator on \mathcal{H} which has no normal extension in a possibly larger Hilbert space. Moreover, $\dim \mathcal{D}(N^*)/\mathcal{D}(N) = 1$.

PROOF. First we show that $BA \subseteq A*B$. Let $x \in \mathcal{D}(A)$. Then x = (S - I)y for some $y \in \mathcal{H}$ and B(A - i)x = 2iBy. Let $P := z^0 \otimes z^0$. Since (I - P)BS = SB and $z^0 \in \ker(A*-i)$, $Bx = (S - I)By + PBSy \in \mathcal{D}(A*)$ and (A*-i)Bx = (A - i)(S - I)By = 2iBy = B(A - i)x. This proves $BA \subseteq A*B$.

From $BA \subseteq A^*B$ and $B = B^*$, it follows that $\langle Ax, Bx \rangle = \langle Bx, Ax \rangle$ for $x \in \mathcal{D}(A)$. Since $N^* = A^* - iB$ and $\mathcal{D}(N) \subseteq \mathcal{D}(N^*)$, the latter implies $||Nx||^2 = ||Ax||^2 + ||Bx||^2 = ||N^*x||^2$ for $x \in \mathcal{D}(N) = \mathcal{D}(A)$. That is, N is formally normal. Since A has deficiency indices (0, 1), dim $\mathcal{D}(N^*)/\mathcal{D}(N) = 1$.

Received by the editors January 18, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A20, 47B15.

Key words and phrases. Formally normal operator, unbounded normal operator.

Assume that there exists a normal extension N_1 of N in a Hilbert space $\mathscr{H}_1 \supseteq \mathscr{H}$. Let U_1 denote the Cayley transform of the selfadjoint operator $A_1 := \overline{\operatorname{Re} N_1}$ on \mathscr{H}_1 . From $A_1 \supseteq A$ and $(A - i)\mathscr{D}(A) = \mathscr{H}$ it follows that $U_1 \upharpoonright \mathscr{H} = S$. Clearly, $B \subseteq B_1 := \overline{\operatorname{Im} N_1}$. Because N is normal, $U_1B_1 \subseteq B_1U_1$. Since $B = B_1 \upharpoonright \mathscr{H}$ and $S = U_1 \upharpoonright \mathscr{H}$, this implies SB = BS. Since B = S + S * by definition, this is a contradiction.

- REMARKS. 1. A slight modification of the above proof shows the following: Suppose A is a maximal symmetric operator on a Hilbert space \mathcal{H} . Suppose B is a bounded selfadjoint operator on H such that $BA \subseteq A*B$, but $BA \nsubseteq AB$. Then N := A + iB is a formally normal operator which cannot be extended to a normal operator in any larger Hilbert space.
- 2. In the above example, B can be replaced by an arbitrary bounded selfadjoint Toeplitz operator B_{φ} with symbol $\varphi \neq 0$ in $L^{\infty}(\mathbb{T})$. (By Example 1.10 in [2], $B_{\varphi}A \subseteq A^*B_{\varphi}$ and $B_{\varphi}A \not\subseteq AB_{\varphi}$.)
- 3. Suppose A and B are selfadjoint operators which commute on a common core \mathscr{D} and for which the spectral projections do not commute. Then $N := \overline{(A+iB) \upharpoonright \mathscr{D}}$ is formally normal and has no normal extension in a possibly larger Hilbert space [3, Lemma 1.5]. But it seems to be more difficult in general to calculate dim $\mathscr{D}(N^*)/\mathscr{D}(N)$ in that case.

REFERENCES

- 1. E. A. Coddington, Formally normal operators having no normal extensions, Canad. J. Math. 17 (1965), 1030–1040.
- 2. K. Schmüdgen, Unbounded commutants and intertwining spaces of unbounded symmetric operators and *-representations (to appear).
- 3. _____, On commuting unbounded self-adjoint operators. III, Preprint, 1984; Manuscripta Math. (to appear).

SEKTION MATHEMATIK, KARL-MARX-UNIVERSITÄT LEIPZIG, 7010 LEIPZIG, GERMAN DEMOCRATIC REPUBLIC