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THE ALGEBRAIC INDEPENDENCE OF CERTAIN

LIOUVILLE CONTINUED FRACTIONS

WILLIAM W. ADAMS1

Abstract. This work uses some simple Liouville type arguments to extend some

recent work of Bundschuh and of Laohakosol and Ubolsri on algebraic indepen-

dence. The results are stronger and are not restricted to just two numbers. We then

use the results to give a new and simple proof of Bundschuh's result concerning the

algebraic independence of certain numbers whose g-adic and continued fraction

expansions are both known.

1. Introduction. In this paper we generalize and strengthen the results of Laohakosol

and Ubolsri [11]. In that paper they prove by the method of [1, 9, 14] the algebraic

independence of certain pairs of "Liouville" continued fractions. Here a similar

result is given for any number of such numbers. Also, the hypothesis is weakened

allowing a restriction in their application to be removed. The work here also

generalizes some of the work of Bundschuh in [5] from two numbers to an arbitrary

number of numbers. The application given in [11] was first proved by Bundschuh in

[4] in more generality by a complicated method following Durand [8]. The full result

can be proved here by the current simpler method.

We fix the following notation. Let a1,...,an be n real numbers with continued

fraction expansions

«/= [a0/> alj,a2j,...].

(See [10], for example, for facts concerning continued fractions.) Denote the conver-

gents of etjby pNj/qNj(n = 0,1,2,...,1 <y' < n).

Theorem 1. Suppose we have an r > 1 and a function f(i) for i = 1,2,... with

f(i)-> oo (j -» oo) and a subsequence of the positive integers N1 < N2 < • • • such

that, for all i = 1,2,...,

(1) aNi+lJ>q^       (y-1,2.«),

(2) qNj-i>rMqNj       (j = 2,3,...,«, N = A/ N, + l).

Then al,...,an are algebraically independent.
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To see that this result generalizes the results of [5, 11] we note

Corollary 2. Suppose there are constants r, r > 1 and a function g(i) for

i = 1,2,... with g(i) -* oo (i —* oo) and a subsequence of the positive integers

N1 < N2 < ■ ■ ■ such that, for all N = 1,2,... and) = 2,...,n,we have

(3) û/v+1,1 > oTm>

(4) flAr.y-1 > raNJ,

(5) fl»/+W >««??■

Then a1,...,a„ are algebraically independent.

As an application we prove a result which first appeared in [4].

Corollary 3. For any integer g > 2 and irrational number ß set

00

sg(ß) = (g-i)zZg^ß]-

Then, if ß has unbounded partial quotients and g,,... ,gn are distinct integers ^ 2, we

have that Sgt(ß),.. .,Sg(ß) are algebraically independent.

2. A general Liouville type algebraic independence criteria. In this section we

axiomatize the proofs given in [9, 11, 14].

Theorem 4. Let a,,... ,anbe n real numbers. Assume that we are given integerspNj,

qNj (N = 1,2,... and 1 <y < n) with qNj —> oo (N -* oo). Assume that, for j =

2,3,...,«,

(6) lim
N-<x>

Pnj-i
aJ-l - /

Pnj
a-

1        iNj
0.

Further assume that for each j = 1,2,... ,n and all positive integers D there is an

N0 = N0(D) such that, for all N > N0,

(7) 0 < \<Xj - pNj/qNj\ < l/(qNl • • • qNj)°-

Then a1,... ,an are algebraically independent.

Proof. We show by induction on y = 1,2,...,« that ax,...,a¡ are algebraically

independent. For y = 1 we note that (7) implies that a, is a Liouville number (see

[12]) and thus is transcendental. So we assume y > 1. If the result were false, then

there would be a nonzero polynomial f(xx,.. .,*,) with integer coefficients of

minimal total degree such that /(a,,... ,a-) = 0. Expand / in a Taylor series about

*i,...,<Xj,

f(Xl,...,Xj) = £<?(-)(*! - aj)"1 •■■(Xj- ajYJ,

where (v) = (?,,.. .,vf). For z = l,...,y, set C, = c(v) where v has a 1 in the z'th

coordinate and a zero everywhere else. We have

Cy-(3/8*y)/(a1;...,a,).
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Then C = 0 implies (d/dxj)f(xx,.. .,Xj) = O or else there would be a nonzero

polynomial of smaller degree than/vanishing at a,,... ,ay. But then Xj did not occur

in the polynomial / and we obtain that a1,...,aJ_l are algebraically dependent,

violating our induction assumption. Thus C, # 0. Setting

&i(N)=pNi/qNi-ai       (1 < í <y)

we obtain

APm

J\qNi

PNj

qNJ

= fiy(JV) cMi__) + + c,
gy-i(^)

J~l  Sj(N) + C-   + 0(|«,(AO|)

(|5-(_V)| is the largest by (6)). The expression inside the square bracket is not zero for

N large by (6) and the fact that C, * 0. Thus Ö//V) # 0 implies

f(pNi/qNi,- ■ ■ ,Pnj/1nj) ^ 0 for TV large. We then easily derive (see [1, Proposition

3]) that if D1,...,Dj denotes the degree of / in x1,...,xJ, respectively, there is a

constant C = C(al,.. .,<*-, f) such that, for all N large,

1

ÎA
■V/

tfzvi

£zy/

?zvy
< C

?/vy

which violates (7).   D

As was first pointed out to me by David Masser, this result gives a trivial proof of

the results in [1], and indeed proves

Corollary 5. Let kv (v = 1,2,...) be a strictly increasing sequence of positive

integers such that limsupAr_00fcAf+1/z.A, = oo. Let g1,...,g„ be distinct integers > 2

and set ay = Ej°_i gjk". Then a,,... ,a„ are algebraically independent.

(This result occurs in [13].)

Proof. We may assume g, > g2 > • • ■ > g„. SetpNj/qNj = EjLig/*'. We have

?zv, = Ï*"   and    Vg*w+1 < |«/ - Pnj/1nj\ < V&j"*1-

Then (7) is implied by

Vgj"*1 < v{giN ■■■ gjN)°

which is clear for a subsequence if N tending to infinity. Moreover, (6) is clear since

the relevant expression is bounded above by (2/g*J.11)g*'v+1 which tends to zero.    D

3. Proof of the results on continued fractions. To prove Theorem 1 we verify the

hypothesis of Theorem 4 with the N of Theorem 4 replaced by the N¡ of Theorem 1.

To prove (6) we note that the usual estimates from continued fractions and (2) imply

Pn,j-ï

9¡v,,y-i
/

Pnj 2?Az(+i,y9Ar(,y

îw,+_,,/-íírVj.y-i

< 2z--2'<"
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<  VazV+l..?

which tends to zero by hypothesis. To verify (7) we use

Pnj

qNj

and see that it suffices to prove that, for z > i0(D),

(8) aN,+ij> (<7/v,i ■•• 9nj)   ■

From (2) we have

(?zv,i ••• 9nj)    < ?/vfi

and so (8) follows immediately from (1).    D

Corollary 2 may be derived from Theorem 1 by showing that (3), (4) and (5)

implies (1) and (2). From Lemma 3 of [5] we have from (4) that £#,/__ > rN/1(¡Nj f°r

all TV = 1,2,... and y = 2,...,n. Thus (2) is valid for any /(/') < N¡/2. To verify (1)

we will show that (3) implies there is a constant C > 0 such that, for all N = 1,2,...,

(9) qm < Ca%?-X\

Assuming this and using (5) we see

which implies (1) for, say,/(z) < \((r — l)/r)g(i), and i large. We may take a new

sequence by starting with i large and/(z) < N¡/2, j((t — \)/t)g(i).

It remains to prove (9). We have from (3) that, for v = 0,1,2,... ,N — 1, aNi >

ajv_„,i> and thus

N

9zvi < Yl(aN-r+i.i + 1)
V= 1

N N

<n(«i/r, + i) = n^/rl(i + a^A"-1).
v=l » = 1

Now,

ZV
n„l/T-'    = Ei-PA'"'    __ (l-l/T^Ml-l/T)   <     -T/(T-1)"ZV1 "ZV1 "ZV1 ^  "JVI

v=\

Also au > 2 (from (4)) and thus aNl > 2T     (from (3)) and so

n(i+«¡v\/T'")<n(i + 2-T"-')<c
v=\ v=l

for some constant C. This proves (9).   D

4. Proof of Corollary 3. Corollary 3 will be deduced from Theorem 1. We may

assume that gx > g2 > ■ • ■ > g„. Set ctj = Sg (ß). Let ß'1 have as its continued

fraction expansion

ß-^ib^b,,^,...]

and convergents PN/QN(N = 0,1,2...). Then from [2] (see also [3, 4, 6]) we have

(10) a0j = bogj,       aNj = {gf/ - gf»-i)/{g?»-> - l)
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and

(H) qNj=(gC»-\)/(gj-l).

It easily follows from (10) that aN+lJ > gj*»+i_1>ßzv and from (11) that qm < gf",

and thus (1) follows since ß has unbounded partial quotients. To prove (2) we simply

note that (11) implies, for eachy, gfN_1 < qNj < gfN and thus, for any N,

Thus (2) is valid since gj < g¡_1 by assumption (the subsequence is unnecessary).   D
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