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ON A CONJECTURE OF BALOG

ADOLF HILDEBRAND

Abstract. A conjecture of A. Balog is proved which gives a sufficient condition on a

set A of positive integers such that A n (A + 1) is infinite. A consequence of this

result is that, for every e > 0, there are infinitely many integers n such that both n

and n + 1 have a prime factor > nl~'.

1. Introduction. Some of the most difficult and seemingly unattackable problems

in number theory deal with simultaneous properties of integers n and their translates

n + t, where . e N is fixed. The twin prime conjecture, for example, asserts that n

and n + 2 are prime infinitely often.

Another problem of this type, posed by Erdös several times (see e.g. [3]), is to

show that, for every fixed e > 0, there are infinitely many integers n such that both n

and n + 1 have a prime factor > nl~c. In other words, putting

Qa= {n^N:P(n)>na},

where P(n) denotes the largest prime factor of n,  the conjecture asserts that

Qa n (Qa + 1) is infinite for every a < 1.

At the Oberwolfach meeting on analytic number theory in 1982, A. Balog

proposed a general conjecture, which gives a sufficient condition on a set A c M,

such that A n (A + 1) contains infinitely many elements. To this end, he introduced

the concept of "Ac-stability". A set A a N is called zc-stable if

kAczA,       k-l(AnkN)cA,

where XA denotes the set {Aa: a € A), and A cz B means that A is contained in B

up to a set of density zero, i.e., d(A \ B) = 0. Here and in the sequel, d(-) denotes

the asymptotic density, defined by

d(A) - lim I £ 1

nsA

(provided this limit exists), and the lower and upper densities d() and <_(■) are

defined analogously by taking the limit inferior and the limit superior, respectively.

Balog [1] showed by an elementary argument that A n (__ + 1) is infinite whenever

A is 2-stable and d(A) > 1/3, and he made the following

Conjecture (Balog [1]). If A c r\l is p-stable for every prime p and has positive

density, then., n (A + 1) is infinite.
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The sets Qa, a < 1, introduced above, have positive density (see e.g. [2]), and it is

easy to see that they are z_-stable for every .eN. Thus Balog's conjecture implies

the above-mentioned conjecture that P(n) > nl~e and P(n + 1) > (n + l)1_e holds

infinitely often for every fixed e > 0.

The purpose of this paper is to prove Balog's conjecture in a more general form.

2. Results. Given a set A c N, we define, for N e N,

AN=    U    ^(ACdN).
n,d=\

These sets form an ascending chain starting with __,=__.

Theorem. // d(_4) > 0, then d(AN n (AN + 1)) > 0 for all sufficiently large N.

More precisely, for every e > 0 there exist _V(e) e M and ô(e) > 0 such that d(A) 5- e

implies

d(ANn(AN+l))>8(e)       (N>N(e)).

If A is p-stable for every prime p < N, then A is zc-stable for all k < N, so that
zv

^¿v=   U   §(¿ ndN)c/i c-4w,

and, therefore, ¿(.4^ O (AN + 1)) = d(-4 n (_4 + 1)). Thus the theorem implies

Balog's conjecture in the following form.

Corollary 1. If A c N satisfies d(A) > e and is p-stable for every prime

p < N(e), then d(A n (A + 1)) > 8(e) holds, where N(e) and 8(e) are as in the

Theorem.

Applying this result to the sets Qa \ Qß, 0 < a < ß < 1, we obtain the conjecture

mentioned in the introduction in the following slightly more general form.

Corollary 2. Let 0 < o < ß < 1. Then the set of integers n for which n" < P(n)

< n^,(n + 1)" < P(n + 1)< (n + 1)^ holds has positive lower density.

3. Lemmas.

Lemma 1. For every k ^ 2 there exist positive integers nx < ■ ■ ■  < n k satisfying

(1) ny - n( - (n„ ny)       (1 « i <j « k).

Proof.1 We define an auxiliary sequence (Nk)k>1 recursively by

¿vi-i, Nk+l-in i-vJ   (*>i).

By construction,

y-i

L Nh\Nj\NJ+l\ ■•• \Nk       (1</<;<*).
A-i

'Heath-Brown [4] proved a stronger form of the lemma, where the n, were required to satisfy an

additional condition besides (1). Since this additional condition is of no relevance here and complicates

the proof considerably, we preferred to give a short proof of the lemma in the form stated.
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Thus, if for given k > 2 we put

Zc-l

nk = Nk,   n, = Nk-  £ TV,       (l < / < k - 1),
y-<

we have nk> • • ■  > zz, ,» A^/2 > 1, and

y-l Zc-i

»y - », - IJW - I ** = »j      Q.<i<j<k),
h = i h=j

which is equivalent to (1).

Lemma 2. Let r be a positive integer, and for D ^ \ let 2> = 3l(D, r) be the set of

positive integers d < D of the form

(2) d=dlP,    (p,r) = l,    q\dl^>q\r,

where p and q denote primes. Then we have

lLl=1o8.ogU> + 2) + 0(1)
r d^s¿d <f(n

and

(4) d(lM\ U d(rN - 1))
V ,V___£3) /

<p(r)

_•«=* loglog(Z) + 2)'

w/iere <p « ./ze Euler function and the implied constants are absolute.

Proof. Letting d, be an integer all of whose prime factors divide r, we have

zU z f Li<n(i-i)"i:i
r

V(r)
(loglog(£> + 2) + 0(1))

and

Zh>  I  -r E 1
ptr

-7-T-    £    4-]loglog(Z) + 2) + 0(i-).

This yields (3), since

I t < ¿)-1/4ldr1/2 = ö-1/4n(i -r172)-1

« D-1/4exp(2Xp"1/2) « rD-V\

For the proof of (4) we may suppose

(5) loglog D>C<p(r),
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where C is an arbitrary, but fixed, positive constant. Set S = UdeS d(rN — 1) and

define

/(«) = 1.
d\n.d^B

n/d=-\ mod r

Thus f(n) > 0 for all « e N, and f(n) > 0 if and only if n e S. We use a variance

argument to obtain the desired upper bound for d(N \S).

Putting

(6) M= lim I £/(«) = £± lim ^      £      1 = 7 I i

we have

-^dx^oo x

« = -1 mod r

r d~Bd'

\S) = lim -   £   1 <  "m
. —» OO   -^

n< je
c—► 00  X

1

|/(n)-/W|>W/2

4    ,.      1   ^ , „   ,      ...2       4   ( ..      1  r  „  ,2
< —2  um - £ (/(«) - M)¿ = —    lim :: E /(«)2 - M

AT

M
[M2-M2},    say.

In view of (3), (6), and (5) (with a sufficiently large constant C), the asserted upper

bound (4) follows if we can show

,2

(7) M,
.    ^    ,.     x2    .   /loglog/)^   ,    ^ /log lOg g

lim - E /(")  «
. —♦ oo -^ <p(0 + o

cp(r)

with an absolute O-constant.

Expanding/(zz)2, we get

M,
</,_"e

-- lim
.  a [d,d'\ *-<*

[d,d'\
E    1.

n<x/\d,d'\
(*)

where (*) denotes the condition

, , nd
(*)

nd'
s -1 mod /-.

Let d = dxp and d' = d[p' be the (unique) decompositions of the form (2) for d and

d '. Then (*) has a solution in zz if and only if d1 = d[, p = p' mod r, and in this case

the limit in the last expression equals 1/r. Thus we get

M,<-I
" d^D dl

p.p'4,D      iP'P
p—p' mod /■

p\r

1       v-    1
< ~~TT   E   _

^ p' =p mod r

E    ^ + 0(1)

\
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The innermost sum equals

E   ¿ + o(   i   i
e'^p'^D   r \      n^er
, , n = p mod r

p =p mod r r

/%(,,,,,)£+0(1)-**!*£+0(1),
■V x2 <p(r)

where the last step follows from the Siegel-Walfisz theorem. We therefore obtain

M^-^fl^f^M^fOd)»('MA? A   «PÍO

/logjog_D\2 + ^/loglogZ)'

<p(0    / I    <?('•)
i.e., estimate (7). This completes the proof of Lemma 2.

4. Proof of the Theorem. For x > 0 let d _( • ) be defined by

<U*0 = ^  £ 1       (_lfc IM),

«e/VZ

so that

d(M) = liminfd-(M),       d(M) = limsupd-(M).

If X S- 1, then obviously

dx(XM) = (1/X)dx/X(M) < dx(M),

and for every fixed t g IM we have

dx(M + t) = dx(M) + o(l)    as;c->oo.

Given a set .I c IM and positive integers «,<•••  < nk satisfying (1), we define

the sets
Bid=ni(A + d)r\nd\       (1 < i < k,de IM),

where n = nf=1z?,2. By the inclusion-exclusion principle we have, for x > 0 and

every d G IM,

/  k \       *

(8) dx   U^,-U IM*,,,,)-     £     d-(5,,,n^,J.
\; = 1 /       f-1 i<i<y<*

We shall estimate from above the second term on the right in terms of

dx(ANn(AN+l)),

where N > max(d, n), and bound the first term, averaged over a suitable range for

d, from below in terms of dx/nifA). This will lead to the desired relation between

the densities of A andAN C\ (AN + I).

Using the stated properties of the function d _, we obtain

dx(B„d) = àx[nt[{A + d) n rf^)) = ¿-¿„„((.i + d) n d^-fcl)
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where T¡ = (zz/z.,)r\l - 1. Moreover, for 1 < / < y < /_, we get

d„(5.,_-n By,d) < d-(/i,(_- + d) n nj(A + d) n dh.^lM)

/
<d-

/Í n dIM »,      _4 n dN       «, - "z ,„,.

k(»<. »y)        d \(",»"y)        d («z. "y)

<d,(-4wn(-lw+l)) + o(l),

provided TV > max(«, d), where the last step follows from (1) and the definition of

AN. Substituting these estimates together with the trivial bound

dJlM._ Ud_(d«IM)<¿

into (8) yields

¿ > f E dx/ni(/i n ¿r,) - fcM,(i_w n(_4w + l)) + o(i)

for every fixed d g IM and TV 3* max(zz, d).

We now fix D 5- 1 and let 3) = S¿i(D, n/n¡) be defined as in Lemma 2, with

r = «//.,-. Since __}(A r) depends only on the set of prime factors of r, and the

numbers n/n¡ = ITJL,/.2/«,, 1 < i < k, have the same set of prime factors, this

definition does not depend on the choice of the index i. Summing the last inequality

over d G 3>, we obtain, for N > max(«, D),

k

l-L^>^Z   E dx/nt(A n dTt) - Dk2dx(ANn(AN + 1)) + 0(1)
d<=3 k. , = i de@

1       *
> — E d./B4(-4 n S,) - Dk2dx(ANn(AN + 1)) + 0(1),

* , = i

where

si- UdT,= u4>-i.

Letting x -» oo, we deduce

1    '    ,.      _,      1   --,   1
(9)       Z)*2^ n(¿w + 1)) > - £ d(_- n s,) - - £ -,

"k  , = 1 "   rf— «

>±u.(A)-±Íd(H\Si)-l £ i.
'* i-I " des'

By Lemma 2 we have

and

n¿ y.   1 <<; loglog(Z) + 2) + ,

zz sd ç> (»/«*)

œ ( «/zz, )
\_?,) «

loglog(Z) + 2) '



ON A CONJECTURE OF BALOG 523

Since

m(n/n.\ _    / 1 \ _       ¡ïîsaî - n fi - i) - n '■  '
"/«i p\n/n,\ PI       p\n1---nk\ P.

is independent of the choice of i, and since, in view of (1),

ZZi < zz, < zz¿. < 2z71;

the last estimate remains valid with <p(n/nk) in place of cp(n/nA. Thus, defining

D = D(k) by

loglog(£> + 2)      ^

<f(n/nk)

we obtain, from (9),

Dk2d(AN n(AN + 1)) > ^íáU) + o(¿)

with an absolute 0-constant. If now d(A) > e (> 0), then by choosing k = k(e)

sufficiently large (which is possible by Lemma 1), the O-term becomes < e/2, and

we get

d{ANn(AN+l))>8(t)       (N>N(e)),

with

as asserted in the Theorem.

By a minor modification of the proof, one can show that the theorem remains

valid, when d is replaced by the upper density d.
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