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GENERALIZATION OF TWO RESULTS

OF THE THEORY OF UNIFORM DISTRIBUTION

PETKO d. proinov

Abstract. For a sequence *,,_xN of points in [0,1] and a sequence /?,,... ,pN

(Pi + Pi +   ' ' ' + Pn = 1) of nonnegative numbers, define the distribution function

g(x) Pk-

Let <p be an increasing function on [0,1] and <p(0) = 0. The main result of the paper

F(DN)<f <p(\g(x)\)dx*<p(DN),

where DN is the supremum norm of g on [0,1] and F is the antiderivative of <p with

F(0) = 0. This result generalizes and improves an estimate of Niederreiter [1] for the

L2 discrepancy of the sequence x¡,...,xN. Applying the above inequality we also

obtain a new criterion for uniform distribution modulo one.

1. Introduction. Let us recall some definitions and results of the theory of uniform

distribution modulo one.

Definition A. Let xv x2,...,xN be a finite sequence in the interval [0,1]. The

number

n(p)UN
/'

1«„«;ZV
v. <v

P        \ l/P

dx

I

0 < p < oo,

is called the Lp discrepancy of the given sequence.

In what follows, we shall write DN instead of Djf\

H. Niederreiter proved the following theorem using the well-known inequality of

LeVeque.

(1)

Theorem A (Niederreiter [1]). For any sequence xv x2,... ,xN in [0,1] we have

1
r)3/2 <   D(2) K   p.

Definition B. Let a = (x„) be an infinite sequence in [0,1]. For the infinite

sequence a, the Lp discrepancy Djf)(o) is defined to be the Lp discrepancy of the

initial segment formed by the first N terms of a.

Again, we shall write DN(a) instead of D$)0)(o).
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Definition C. An infinite sequence a in [0,1] is said to be uniformly distributed

(in the sense of Weyl) if

lim DN(a) = 0.
zV-»oo

The following criterion for uniform distribution is well known.

Theorem B (Sobol [2, P. 115]). Suppose 0 < p < oo. Then an infinite sequence a in

[0,1] is uniformly distributed if and only if

lim DifHo) = 0.

In §2 we generalize and improve Theorem A. In §3 we generalize Theorem B.

2. Generalization of Theorem A. Suppose we are given a finite sequence x,,

x2,.. .,xN in [0,1] and a finite sequencep,, p2,... ,pN of nonnegative numbers. We

call the numbers p,, p2,... ,pN weights of the numbers ..,, x2,... ,xN, respectively.

Let us define the functions h and g on [0,1] by

(2) h(x)=     E    Pk
l^knN

xk<x

and

(3) g(x) = x-h(x).

Obviously, the function h is increasing on [0,1] and the function g is piecewise linear

on [0,1].

Definition 1. The number

D(np)= (f \g(x)fdx)j   ",       0<p< oo,

is said to be the Lp discrepancy of the sequence xv x2,...,xN with respect to the

weights pY,p2,...,pN.

Instead of Dj^0) we shall write DN. Evidently,

(4) DN=   sup   \g(x)\.
0«.ï«1

Comparing Definition A with Definition 1 we see that the Lp discrepancy of the

sequence x,, x2,.. .,xN is equal to the Lp discrepancy of this sequence with respect

to the weightsp, = p2 = ■ ■ ■ = pN = l/N.

Theorem 1. Let <p be an increasing function on [0,1], <p(0) = 0 and

(5) F(x) = f <p(t) dt.

Then for any sequence x1,x2,-.-,xNin[0,1] and any weights px, p2,... ,pN with

(6) E Pk = 1
Z< = 1

we have

(7) F(DN)^(\(\g(x)\)dx^cp(DN),

where the function g is defined by (3).
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Proof. The second inequality in (7) is obvious. It holds true because qp increases

on [0,1]. Now, we shall prove the first inequality in (7). Let a be an arbitrary real

number with

(8) 0 < a < DN.

First we shall prove the following inequality.

(9) F(a)^(\(\g(x)\)dx.
Jo

It follows from (4) and (8) that there exists a number x0 g [0,1] such that

\g(x0)\> a.

According to the definition of g, the above inequality can be written as

l*0- Hx0)\>a-

Hence, there are two possible cases:

h(x0) > x0 + a   or   h(x0) < x0 - a.

Further, we shall prove (9) in the first case only because it can similarly be proved in

the second case as well.

Suppose h(xQ) > x0 + a. Then from (2) and (6), we have

(10) [xo,*o + a]c[0,l].

Since <p is an increasing function on [0,1] and cp(0) = 0, it follows that the inequality

<p([g(x)|) > 0 holds for every x g [0,1]. Hence, we obtain from (10)

(11) f\{\g(x)\)dx>f° + \{\g(x)\)dx.
0 x0

Now suppose that x G [x0, x0 + a]. Since the function h increases on [0,1], we

deduce

g(x) < x — h(x0) < x - x0 - a < 0.

Therefore,

|g(*)l= -g(x) > x0 + a- x.

Hence, using (11) and (5) we get

j   <p(\g(x)\)dx > J <p(x0 + a- x)dx = F{a).
0 x0

Thus, (9) is proved in the first case.

Now it follows from (9) that

(12) sup    F(a)< P <p(\g(x)\) dx.
0<a<DN J0

But the function F is increasing on [0,1] because <p(x) > 0 for every x g [0,1].

Hence, Fis increasing on [0, DN], too, because 0 < DN < 1. Therefore,

(13) sup    F(a) = F(DN).
0<a<DN

Finally, the first inequality in (7) follows from (12) and (13). Theorem 1 is proved.
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Setting cp(x) = xp (0 < p < oo)in Theorem 1, we immediately obtain

Corollary 1. Suppose 0 < p < oo. 77z_zz for any sequence x,, x2,.. .,xN in [0,1]

and any weights p,, p2,...,pN with (6) we have

(14)-^-Z.]^ < 2,y> < ¿V
(p + \)1/p

Remark 1. From (14) we get the following estimate forp = 2,

(15) j^Dr^D^ <ZV

It is easy to see that (15) improves estimate (1) of Niederreiter.

Remark 2. The first inequality in (7) changes into an equality if xx — x2 = ■ • ■ =

xN = 0.

3. Generalization of Theorem B. Suppose we are given two infinite triangular

matrices X = (x{n)) and P = (pkn)) with 0 < xkn) < 1 and p[n) > 0 (« = 1, 2,...;

z. = 1,..., n ). We call the matrix P a weight matrix of the matrix X.

Definition 2. Suppose 0 < p < oo. The Lp discrepancy D¡¡P)(X, P) is defined to

be the Lp discrepancy of the sequence x["\ x2"\.. ■,x\1") with respect to the weights

n(") „(")        „(") ; pPi    >P2    »•••'Pn    ' le-

(16) D^(X,P) = [fX\gn(x)\ dx

where

(17) *„(*) = *-    I   P{'■>
k

lUk sin

Definition 3 (see [3]). The matrix X is said to be uniformly distributed with

respect to the weight matrix P if

(18) lim Dn(X, P) = 0.
/7—» OO

Definition 4. Let cp be a function defined on [0,1]. We call <p a basic function if it

satisfies the following three conditions:

(i) <p is increasing on [0,1],

(ii) limx^0+ <p(x) = 0,

(iii) cp(x) = 0 if and only if x = 0.

Lemma 1. Let cp be a basic function. Then the function F defined by (5) is a basic

function as well.

Proof. From (5), (i) and (iii), we deduce

f(x2) - f(xx) > ña^(í__+_ñi) > o

for all x, and x2 with 0 < xx < x2 < 1. Therefore, F is strictly increasing on [0,1].

Hence, for every x g (0,1] we have

0 = F(0) < F(x) < xcp(x).

Passing to the limit as x -» 0+ in this inequality, we get limx^0+ F(x) = 0.
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Lemma 2. Let cp be a basic function. Then the matrix is uniformly distributed with

respect to the weight matrix if and only if

(19) lim <p(D„(X, P)) - 0.
n —» oo

Proof. The necessity follows immediately from (ii) and Definition 3. Now

suppose that (19) holds, but (18) does not hold. Then there exists a positive number

e0 such that the inequality

(20) D„(X,P)>e0

holds for infinitely many values of n. It follows from (20) and (i) that

(21) v{Dn{X, P)) > <p(60).

From (19), (21) and (iii), we deduce

0=  lim <p(D„(X, P)) > <p(e0) > 0,
n —► oo

which is a contradiction. Therefore, if (19) holds then (18) holds, too, i.e. X is

uniformly distributed with respect to P.

The following criterion for uniform distribution is a generalization of Theorem B.

Theorem 2. Let cp be a basic function and let P be a weight matrix with

(22) Epr=l       (« = 1,2,...).
Zi = l

Then a matrix X is uniformly distributed with respect to the weight matrix P if and only

if

lim f <p{\gn(x)\) dx = 0,
n—* oo J0

where g„(x) is defined by (17).

Proof. By Theorem 1 we have

(23) F(D„(X, />)) < f <p(\g„{x)\) dx < q>(D„(X, _>)).

Since <p is a basic function, it follows from Lemma 1 that F is a basic function, too.

Now, the assertion follows from (23) and Lemma 2.

Setting <p(x) = xp (0 < p < oo)in Theorem 2, we immediately obtain

Corollary 2. Let 0 < p < oo and P be a weight matrix with (22). Then a matrix X

is uniformly distributed with respect to the weight matrix P if and only if

lim D{np)(X, P) = 0.
n—*cc

Remark 3. It is easy to see that Corollary 2 is a generalization of Theorem B.

Indeed, let a = (xn) be an infinite sequence in [0,1]. Applying Corollary 2 for the

matrices X = (x[n)) and P = (pkn)) with x[n) = xk and p[n) = 1/n (n = 1, 2,... ;

k = 1,...,n) we get Theorem B.
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4. Final remark. Theorem 2 shows that as a measure of the distribution of a matrix

X with respect to a weight matrix P, alongside with the Lp discrepancy D¡,p)(X, P),

one may use the tp-discrepancy

D^(X,P) = f<p{\gn(x)\)dx,

where <p is a basic function and g„(x) is defined by (17).

Similarly, as a measure of the distribution of a sequence xv x2,...,xN in [0,1]

with respect to the weights p,, p2,... ,pN, alongside with the Lp discrepancy Djf\

one can use the <p-discrepancy

D^ = j\(\g(x)\)dx,

where cp is a basic function, too, and g(x) is defined by (3).
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