GENERALIZATION OF TWO RESULTS OF THE THEORY OF UNIFORM DISTRIBUTION

PETKO D. PROINOV

ABSTRACT. For a sequence x_1, \ldots, x_N of points in [0,1] and a sequence p_1, \ldots, p_N ($p_1 + p_2 + \cdots + p_N = 1$) of nonnegative numbers, define the distribution function

$$g(x) = x - \sum_{x_k < x} p_k.$$

Let φ be an increasing function on [0, 1] and $\varphi(0) = 0$. The main result of the paper is

$$F(D_N) \leq \int_0^1 \varphi(|g(x)|) dx \leq \varphi(D_N),$$

where D_N is the supremum norm of g on [0,1] and F is the antiderivative of φ with F(0) = 0. This result generalizes and improves an estimate of Niederreiter [1] for the L^2 discrepancy of the sequence x_1, \ldots, x_N . Applying the above inequality we also obtain a new criterion for uniform distribution modulo one.

1. Introduction. Let us recall some definitions and results of the theory of uniform distribution modulo one.

DEFINITION A. Let $x_1, x_2, ..., x_N$ be a finite sequence in the interval [0, 1]. The number

$$D_N^{(p)} = \left(\int_0^1 \left| x - \frac{1}{N} \sum_{\substack{1 \le k \le N \\ k \le N}} 1 \right|^p dx \right)^{1/p}, \quad 0$$

is called the L^p discrepancy of the given sequence.

In what follows, we shall write D_N instead of $D_N^{(\infty)}$.

H. Niederreiter proved the following theorem using the well-known inequality of LeVeque.

THEOREM A (NIEDERREITER [1]). For any sequence $x_1, x_2, ..., x_N$ in [0, 1] we have

(1)
$$\frac{1}{\sqrt{12}} D_N^{3/2} \leqslant D_N^{(2)} \leqslant D_N.$$

DEFINITION B. Let $\sigma = (x_n)$ be an infinite sequence in [0,1]. For the infinite sequence σ , the L^p discrepancy $D_N^{(p)}(\sigma)$ is defined to be the L^p discrepancy of the initial segment formed by the first N terms of σ .

Again, we shall write $D_N(\sigma)$ instead of $D_N^{(\infty)}(\sigma)$.

Received by the editors August 20, 1984 and, in revised form, January 15, 1985. 1980 Mathematics Subject Classification. Primary 10K05, 10F40.

528 P. D. PROINOV

DEFINITION C. An infinite sequence σ in [0, 1] is said to be uniformly distributed (in the sense of Weyl) if

$$\lim_{N\to\infty}D_N(\sigma)=0.$$

The following criterion for uniform distribution is well known.

THEOREM B (SOBOL [2, P. 115]). Suppose $0 . Then an infinite sequence <math>\sigma$ in [0, 1] is uniformly distributed if and only if

$$\lim_{N\to\infty}D_N^{(p)}(\sigma)=0.$$

In §2 we generalize and improve Theorem A. In §3 we generalize Theorem B.

2. Generalization of Theorem A. Suppose we are given a finite sequence x_1 , x_2, \ldots, x_N in [0, 1] and a finite sequence p_1, p_2, \ldots, p_N of nonnegative numbers. We call the numbers p_1, p_2, \ldots, p_N weights of the numbers x_1, x_2, \ldots, x_N , respectively. Let us define the functions h and g on [0, 1] by

(2)
$$h(x) = \sum_{\substack{1 \leq k \leq N \\ x_k \leq x}} p_k$$

and

$$g(x) = x - h(x).$$

Obviously, the function h is increasing on [0, 1] and the function g is piecewise linear on [0, 1].

DEFINITION 1. The number

$$D_N^{(p)} = \left(\int_0^1 |g(x)|^p dx \right)^{1/p}, \quad 0$$

is said to be the L^p discrepancy of the sequence $x_1, x_2, ..., x_N$ with respect to the weights $p_1, p_2, ..., p_N$.

Instead of $D_N^{(\infty)}$ we shall write D_N . Evidently,

$$(4) D_N = \sup_{0 \le x \le 1} |g(x)|.$$

Comparing Definition A with Definition 1 we see that the L^p discrepancy of the sequence x_1, x_2, \ldots, x_N is equal to the L^p discrepancy of this sequence with respect to the weights $p_1 = p_2 = \cdots = p_N = 1/N$.

THEOREM 1. Let φ be an increasing function on [0,1], $\varphi(0)=0$ and

(5)
$$F(x) = \int_0^x \varphi(t) dt.$$

Then for any sequence x_1, x_2, \dots, x_N in [0, 1] and any weights p_1, p_2, \dots, p_N with

$$\sum_{k=1}^{N} p_k = 1$$

we have

(7)
$$F(D_N) \leq \int_0^1 \varphi(|g(x)|) dx \leq \varphi(D_N),$$

where the function g is defined by (3).

PROOF. The second inequality in (7) is obvious. It holds true because φ increases on [0, 1]. Now, we shall prove the first inequality in (7). Let a be an arbitrary real number with

$$(8) 0 < a < D_N.$$

First we shall prove the following inequality.

(9)
$$F(a) \leq \int_0^1 \varphi(|g(x)|) dx.$$

It follows from (4) and (8) that there exists a number $x_0 \in [0, 1]$ such that

$$|g(x_0)| > a$$
.

According to the definition of g, the above inequality can be written as

$$|x_0 - h(x_0)| > a.$$

Hence, there are two possible cases:

$$h(x_0) > x_0 + a$$
 or $h(x_0) < x_0 - a$.

Further, we shall prove (9) in the first case only because it can similarly be proved in the second case as well.

Suppose $h(x_0) > x_0 + a$. Then from (2) and (6), we have

$$[x_0, x_0 + a] \subset [0, 1].$$

Since φ is an increasing function on [0, 1] and $\varphi(0) = 0$, it follows that the inequality $\varphi(|g(x)|) \ge 0$ holds for every $x \in [0, 1]$. Hence, we obtain from (10)

(11)
$$\int_0^1 \varphi(|g(x)|) dx \geqslant \int_{x_0}^{x_0+a} \varphi(|g(x)|) dx.$$

Now suppose that $x \in [x_0, x_0 + a]$. Since the function h increases on [0, 1], we deduce

$$g(x) \le x - h(x_0) < x - x_0 - a \le 0.$$

Therefore.

$$|g(x)| = -g(x) > x_0 + a - x.$$

Hence, using (11) and (5) we get

$$\int_0^1 \varphi(|g(x)|) dx \ge \int_{x_0}^{x_0+a} \varphi(x_0+a-x) dx = F(a).$$

Thus, (9) is proved in the first case.

Now it follows from (9) that

(12)
$$\sup_{0 < a < D_N} F(a) \leqslant \int_0^1 \varphi(|g(x)|) dx.$$

But the function F is increasing on [0,1] because $\varphi(x) \ge 0$ for every $x \in [0,1]$. Hence, F is increasing on $[0, D_N]$, too, because $0 < D_N \le 1$. Therefore,

(13)
$$\sup_{0 < a < D_N} F(a) = F(D_N).$$

Finally, the first inequality in (7) follows from (12) and (13). Theorem 1 is proved.

Setting $\varphi(x) = x^p (0 in Theorem 1, we immediately obtain$

COROLLARY 1. Suppose $0 . Then for any sequence <math>x_1, x_2, ..., x_N$ in [0,1] and any weights $p_1, p_2, ..., p_N$ with (6) we have

(14)
$$\frac{1}{(p+1)^{1/p}}D_N^{1+1/p} \leqslant D_N^{(p)} \leqslant D_N.$$

REMARK 1. From (14) we get the following estimate for p = 2,

(15)
$$\frac{1}{\sqrt{3}}D_N^{3/2} \leqslant D_N^{(2)} \leqslant D_N.$$

It is easy to see that (15) improves estimate (1) of Niederreiter.

REMARK 2. The first inequality in (7) changes into an equality if $x_1 = x_2 = \cdots = x_N = 0$.

3. Generalization of Theorem B. Suppose we are given two infinite triangular matrices $X = (x_k^{(n)})$ and $P = (p_k^{(n)})$ with $0 \le x_k^{(n)} \le 1$ and $p_k^{(n)} \ge 0$ (n = 1, 2, ...; k = 1, ..., n). We call the matrix P a weight matrix of the matrix X.

DEFINITION 2. Suppose $0 . The <math>L^p$ discrepancy $D_n^{(p)}(X, P)$ is defined to be the L^p discrepancy of the sequence $x_1^{(n)}, x_2^{(n)}, \ldots, x_n^{(n)}$ with respect to the weights $p_1^{(n)}, p_2^{(n)}, \ldots, p_n^{(n)}$, i.e.

(16)
$$D_n^{(p)}(X,P) = \left(\int_0^1 |g_n(x)|^p dx\right)^{1/p},$$

where

(17)
$$g_n(x) = x - \sum_{\substack{1 \le k \le n \\ x_k^{(n)} < x}} p_k^{(n)}.$$

DEFINITION 3 (SEE [3]). The matrix X is said to be uniformly distributed with respect to the weight matrix P if

(18)
$$\lim_{n \to \infty} D_n(X, P) = 0.$$

DEFINITION 4. Let φ be a function defined on [0, 1]. We call φ a basic function if it satisfies the following three conditions:

- (i) φ is increasing on [0, 1],
- (ii) $\lim_{x\to 0^+} \varphi(x) = 0$,
- (iii) $\varphi(x) = 0$ if and only if x = 0.

LEMMA 1. Let φ be a basic function. Then the function F defined by (5) is a basic function as well.

PROOF. From (5), (i) and (iii), we deduce

$$F(x_2) - F(x_1) \ge \frac{x_2 - x_1}{2} \varphi\left(\frac{x_1 + x_2}{2}\right) > 0$$

for all x_1 and x_2 with $0 \le x_1 < x_2 \le 1$. Therefore, F is strictly increasing on [0, 1]. Hence, for every $x \in (0, 1]$ we have

$$0 = F(0) < F(x) \le x\varphi(x).$$

Passing to the limit as $x \to 0^+$ in this inequality, we get $\lim_{x \to 0^+} F(x) = 0$.

LEMMA 2. Let φ be a basic function. Then the matrix is uniformly distributed with respect to the weight matrix if and only if

(19)
$$\lim_{n\to\infty}\varphi(D_n(X,P))=0.$$

PROOF. The necessity follows immediately from (ii) and Definition 3. Now suppose that (19) holds, but (18) does not hold. Then there exists a positive number ε_0 such that the inequality

$$(20) D_n(X, P) \geqslant \varepsilon_0$$

holds for infinitely many values of n. It follows from (20) and (i) that

(21)
$$\varphi(D_n(X, P)) \geqslant \varphi(\varepsilon_0).$$

From (19), (21) and (iii), we deduce

$$0 = \lim_{n \to \infty} \varphi(D_n(X, P)) \geqslant \varphi(\varepsilon_0) > 0,$$

which is a contradiction. Therefore, if (19) holds then (18) holds, too, i.e. X is uniformly distributed with respect to P.

The following criterion for uniform distribution is a generalization of Theorem B.

THEOREM 2. Let φ be a basic function and let P be a weight matrix with

(22)
$$\sum_{k=1}^{n} p_k^{(n)} = 1 \qquad (n = 1, 2, ...).$$

Then a matrix X is uniformly distributed with respect to the weight matrix P if and only if

$$\lim_{n\to\infty}\int_0^1\varphi(|g_n(x)|)\,dx=0,$$

where $g_n(x)$ is defined by (17).

PROOF. By Theorem 1 we have

(23)
$$F(D_n(X, P)) \leq \int_0^1 \varphi(|g_n(x)|) dx \leq \varphi(D_n(X, P)).$$

Since φ is a basic function, it follows from Lemma 1 that F is a basic function, too. Now, the assertion follows from (23) and Lemma 2.

Setting $\varphi(x) = x^p (0 in Theorem 2, we immediately obtain$

COROLLARY 2. Let 0 and P be a weight matrix with (22). Then a matrix X is uniformly distributed with respect to the weight matrix P if and only if

$$\lim_{n\to\infty} D_n^{(p)}(X, P) = 0.$$

REMARK 3. It is easy to see that Corollary 2 is a generalization of Theorem B. Indeed, let $\sigma = (x_n)$ be an infinite sequence in [0,1]. Applying Corollary 2 for the matrices $X = (x_k^{(n)})$ and $P = (p_k^{(n)})$ with $x_k^{(n)} = x_k$ and $p_k^{(n)} = 1/n$ (n = 1, 2, ...; k = 1,...,n) we get Theorem B.

532 P. D. PROINOV

4. Final remark. Theorem 2 shows that as a measure of the distribution of a matrix X with respect to a weight matrix P, alongside with the L^p discrepancy $D_n^{(p)}(X, P)$, one may use the φ -discrepancy

$$D_n^{(\varphi)}(X,P) = \int_0^1 \varphi(|g_n(x)|) dx,$$

where φ is a basic function and $g_n(x)$ is defined by (17).

Similarly, as a measure of the distribution of a sequence $x_1, x_2, ..., x_N$ in [0, 1] with respect to the weights $p_1, p_2, ..., p_N$, alongside with the L^p discrepancy $D_N^{(p)}$, one can use the φ -discrepancy

$$D_N^{(\varphi)} = \int_0^1 \varphi(|g(x)|) dx,$$

where φ is a basic function, too, and g(x) is defined by (3).

REFERENCES

- 1. H. Niederreiter, Application of diophantine approximation to numerical integration, Diophantine Approximation and its Applications (C. F. Osgood, ed.), Academic Press, New York, 1973, pp. 129–199.
 - 2. I. M. Sobol, Multidimensional quadrature formulae and Haar functions, Nauka, Moscow, 1969.
- 3. P. D. Proinov, Note on the convergence of the general quadrature process with positive weights, Constructive Function Theory'77 (Bl. Sendov and D. Vačov, eds.), Sofia, 1980, pp. 121-125.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PLOVDIV, 4000 PLOVDIV, BULGARIA